Properties

Label 2-99-1.1-c1-0-1
Degree $2$
Conductor $99$
Sign $1$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 4·5-s − 2·7-s − 3·8-s + 4·10-s + 11-s − 2·13-s − 2·14-s − 16-s − 2·17-s − 6·19-s − 4·20-s + 22-s − 4·23-s + 11·25-s − 2·26-s + 2·28-s + 6·29-s + 4·31-s + 5·32-s − 2·34-s − 8·35-s − 6·37-s − 6·38-s − 12·40-s + 10·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 1.78·5-s − 0.755·7-s − 1.06·8-s + 1.26·10-s + 0.301·11-s − 0.554·13-s − 0.534·14-s − 1/4·16-s − 0.485·17-s − 1.37·19-s − 0.894·20-s + 0.213·22-s − 0.834·23-s + 11/5·25-s − 0.392·26-s + 0.377·28-s + 1.11·29-s + 0.718·31-s + 0.883·32-s − 0.342·34-s − 1.35·35-s − 0.986·37-s − 0.973·38-s − 1.89·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.364292295\)
\(L(\frac12)\) \(\approx\) \(1.364292295\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90490267946747673319167988026, −12.98872560550179677237523477012, −12.34498791478187220687210847964, −10.45031744709829536584104365809, −9.602153864880356635903308889209, −8.765403563089383948261377682178, −6.52495869918911105195591443455, −5.82642873508535905813523337142, −4.44676656528528856043784213256, −2.56141659749378916924669768053, 2.56141659749378916924669768053, 4.44676656528528856043784213256, 5.82642873508535905813523337142, 6.52495869918911105195591443455, 8.765403563089383948261377682178, 9.602153864880356635903308889209, 10.45031744709829536584104365809, 12.34498791478187220687210847964, 12.98872560550179677237523477012, 13.90490267946747673319167988026

Graph of the $Z$-function along the critical line