| L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)5-s + (1 + 1.73i)9-s + (0.5 − 0.866i)11-s + 5·13-s − 0.999·15-s + (0.5 − 0.866i)17-s + (−3 − 5.19i)19-s + (2 + 3.46i)23-s + (−0.499 + 0.866i)25-s + 5·27-s + 3·29-s + (1 − 1.73i)31-s + (−0.499 − 0.866i)33-s + (−4 − 6.92i)37-s + ⋯ |
| L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.223 − 0.387i)5-s + (0.333 + 0.577i)9-s + (0.150 − 0.261i)11-s + 1.38·13-s − 0.258·15-s + (0.121 − 0.210i)17-s + (−0.688 − 1.19i)19-s + (0.417 + 0.722i)23-s + (−0.0999 + 0.173i)25-s + 0.962·27-s + 0.557·29-s + (0.179 − 0.311i)31-s + (−0.0870 − 0.150i)33-s + (−0.657 − 1.13i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.64083 - 0.813405i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.64083 - 0.813405i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5T + 13T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 + 2T + 43T^{2} \) |
| 47 | \( 1 + (3.5 + 6.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7 + 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7 - 12.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (5 - 8.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-2 - 3.46i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.789927330029288171510856477396, −8.789272231445184092629170714700, −8.345606578897386903466460853075, −7.37178789505501947467188505608, −6.61989014358559293073065467617, −5.55757060813207654062647818198, −4.55342840324492373718308685332, −3.53332478968547246071695883085, −2.24843793034550670062404991118, −0.985516337670595522033698410727,
1.35421397992367284149744390398, 2.98478980778539671612450640472, 3.84901127216902779642437630539, 4.57731960000913253770588061262, 6.07071845619069716537708830873, 6.55081251014903475283625746215, 7.72279916913196250510551119877, 8.590140956839011974167373014814, 9.202053634679022763824735940935, 10.40511142129460231541305498386