L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)5-s + (1 + 1.73i)9-s + (−3 + 5.19i)11-s − 2·13-s − 0.999·15-s + (−3 + 5.19i)17-s + (4 + 6.92i)19-s + (−1.5 − 2.59i)23-s + (−0.499 + 0.866i)25-s + 5·27-s + 3·29-s + (1 − 1.73i)31-s + (3 + 5.19i)33-s + (−4 − 6.92i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.223 − 0.387i)5-s + (0.333 + 0.577i)9-s + (−0.904 + 1.56i)11-s − 0.554·13-s − 0.258·15-s + (−0.727 + 1.26i)17-s + (0.917 + 1.58i)19-s + (−0.312 − 0.541i)23-s + (−0.0999 + 0.173i)25-s + 0.962·27-s + 0.557·29-s + (0.179 − 0.311i)31-s + (0.522 + 0.904i)33-s + (−0.657 − 1.13i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06125 + 0.705925i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06125 + 0.705925i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (3 - 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4 - 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 + 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (5 - 8.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 3T + 83T^{2} \) |
| 89 | \( 1 + (1.5 + 2.59i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22665326279681432802530989079, −9.364108686856853557880373933773, −8.188250272607580126965554398450, −7.74296214996388938098857911198, −7.03918237554094277966136532677, −5.83499383544825359569944306323, −4.80882369970073147010761300571, −4.06483709625315044635575586511, −2.46747832701378377104507718087, −1.64973143659609205796173223313,
0.56245545339233962096906289444, 2.77635348021519009364105900721, 3.23958708758297670858193642353, 4.57592037970624273610771017081, 5.34470118528749854473689820698, 6.57048773898033294378105196502, 7.27933364803808815766743741765, 8.281360903314058443916661374250, 9.113886758065741616957605798370, 9.750863008896782505080634156278