L(s) = 1 | + 3i·3-s + (2 + i)5-s − 6·9-s + 3·11-s + i·13-s + (−3 + 6i)15-s + 5i·17-s − 8·19-s − 2i·23-s + (3 + 4i)25-s − 9i·27-s + 29-s + 2·31-s + 9i·33-s + 10i·37-s + ⋯ |
L(s) = 1 | + 1.73i·3-s + (0.894 + 0.447i)5-s − 2·9-s + 0.904·11-s + 0.277i·13-s + (−0.774 + 1.54i)15-s + 1.21i·17-s − 1.83·19-s − 0.417i·23-s + (0.600 + 0.800i)25-s − 1.73i·27-s + 0.185·29-s + 0.359·31-s + 1.56i·33-s + 1.64i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.384578 + 1.62909i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.384578 + 1.62909i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2 - i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 3iT - 3T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 17 | \( 1 - 5iT - 17T^{2} \) |
| 19 | \( 1 + 8T + 19T^{2} \) |
| 23 | \( 1 + 2iT - 23T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 - 10iT - 37T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 11iT - 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + 10T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 + 10iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 10iT - 73T^{2} \) |
| 79 | \( 1 - 7T + 79T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 - 8T + 89T^{2} \) |
| 97 | \( 1 + 3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41335474582043844198113590174, −9.622560021151432896492148975476, −8.935894304999737881634882744772, −8.261941328595009393414374843364, −6.48267042328027339439777400728, −6.17872031279806468540302374260, −4.92756198997538272549689692150, −4.18923555886163601576632259182, −3.31062373178681191280085470489, −2.01841951785734878764055362974,
0.77182193178669602856374884423, 1.86820668411512967594478598834, 2.71340007281772235735847648629, 4.41093566146988608438378054487, 5.70687099983519711550228008734, 6.27392318827859543239492030933, 7.03991450957754779616423359108, 7.85331663001520225087384247214, 8.839989837474824533469769095291, 9.308647782440550662308877980361