Properties

Label 2-980-35.9-c1-0-11
Degree $2$
Conductor $980$
Sign $0.640 + 0.768i$
Analytic cond. $7.82533$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.5 + 0.866i)3-s + (0.5 − 2.17i)5-s + (−1.13 − 1.97i)11-s + 6.09i·13-s + (1.13 + 3.70i)15-s + (4.13 − 2.38i)17-s + (2.13 − 3.70i)19-s + (−0.774 − 0.447i)23-s + (−4.50 − 2.17i)25-s − 5.19i·27-s + 3.27·29-s + (−2.13 − 3.70i)31-s + (3.41 + 1.97i)33-s + (−4.86 − 2.80i)37-s + (−5.27 − 9.13i)39-s + ⋯
L(s)  = 1  + (−0.866 + 0.499i)3-s + (0.223 − 0.974i)5-s + (−0.342 − 0.594i)11-s + 1.68i·13-s + (0.293 + 0.955i)15-s + (1.00 − 0.579i)17-s + (0.490 − 0.849i)19-s + (−0.161 − 0.0932i)23-s + (−0.900 − 0.435i)25-s − 0.999i·27-s + 0.608·29-s + (−0.383 − 0.664i)31-s + (0.594 + 0.342i)33-s + (−0.799 − 0.461i)37-s + (−0.844 − 1.46i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.640 + 0.768i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.640 + 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $0.640 + 0.768i$
Analytic conductor: \(7.82533\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{980} (569, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :1/2),\ 0.640 + 0.768i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.944631 - 0.442329i\)
\(L(\frac12)\) \(\approx\) \(0.944631 - 0.442329i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.5 + 2.17i)T \)
7 \( 1 \)
good3 \( 1 + (1.5 - 0.866i)T + (1.5 - 2.59i)T^{2} \)
11 \( 1 + (1.13 + 1.97i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 - 6.09iT - 13T^{2} \)
17 \( 1 + (-4.13 + 2.38i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.13 + 3.70i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.774 + 0.447i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 3.27T + 29T^{2} \)
31 \( 1 + (2.13 + 3.70i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.86 + 2.80i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 11.2T + 41T^{2} \)
43 \( 1 + 6.50iT - 43T^{2} \)
47 \( 1 + (1.86 + 1.07i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-6.41 + 3.70i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (2.13 + 3.70i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.774 + 1.34i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-12.0 + 6.95i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 + (1.86 - 1.07i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.137 - 0.238i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 5.67iT - 83T^{2} \)
89 \( 1 + (-3.5 + 6.06i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 6.92iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.785826714505362215226699669338, −9.220477703671039925073198133640, −8.363651905394837462096062556101, −7.32919899730726852695156413846, −6.22758291827382797566493141903, −5.38034983685016286330471951022, −4.82470285454155366950724841457, −3.85539497872740389942342621209, −2.23170808545328905696212966653, −0.62792977295507278314955165138, 1.18072024564609385069524372375, 2.75459538746677241304774799013, 3.65866741619006435313047702543, 5.33009048859066419611178980335, 5.78132037942839086168606564902, 6.64624375611533058973906699704, 7.54874472382035195909377214411, 8.114716473139099103434698639295, 9.582820850926269524206193112029, 10.34692575677492504806008442657

Graph of the $Z$-function along the critical line