L(s) = 1 | + (−1.34 − 0.442i)2-s − 0.901·3-s + (1.60 + 1.18i)4-s + i·5-s + (1.21 + 0.398i)6-s + (−1.63 − 2.30i)8-s − 2.18·9-s + (0.442 − 1.34i)10-s − 3.74i·11-s + (−1.44 − 1.07i)12-s + 2.41i·13-s − 0.901i·15-s + (1.17 + 3.82i)16-s − 0.583i·17-s + (2.93 + 0.967i)18-s + 6.15·19-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.312i)2-s − 0.520·3-s + (0.804 + 0.594i)4-s + 0.447i·5-s + (0.494 + 0.162i)6-s + (−0.578 − 0.815i)8-s − 0.729·9-s + (0.139 − 0.424i)10-s − 1.12i·11-s + (−0.418 − 0.309i)12-s + 0.671i·13-s − 0.232i·15-s + (0.293 + 0.955i)16-s − 0.141i·17-s + (0.692 + 0.228i)18-s + 1.41·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.0773−0.997i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.0773−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.0773−0.997i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.0773−0.997i)
|
Particular Values
L(1) |
≈ |
0.327187+0.353565i |
L(21) |
≈ |
0.327187+0.353565i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.34+0.442i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1+0.901T+3T2 |
| 11 | 1+3.74iT−11T2 |
| 13 | 1−2.41iT−13T2 |
| 17 | 1+0.583iT−17T2 |
| 19 | 1−6.15T+19T2 |
| 23 | 1−4.31iT−23T2 |
| 29 | 1+0.435T+29T2 |
| 31 | 1−2.53T+31T2 |
| 37 | 1+11.3T+37T2 |
| 41 | 1−7.35iT−41T2 |
| 43 | 1−5.80iT−43T2 |
| 47 | 1+11.5T+47T2 |
| 53 | 1+3.11T+53T2 |
| 59 | 1−3.47T+59T2 |
| 61 | 1−10.3iT−61T2 |
| 67 | 1−9.84iT−67T2 |
| 71 | 1+9.96iT−71T2 |
| 73 | 1−9.79iT−73T2 |
| 79 | 1−0.459iT−79T2 |
| 83 | 1+2.59T+83T2 |
| 89 | 1−9.88iT−89T2 |
| 97 | 1−4.54iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20768037284709525823450994557, −9.443476050342028976105520547215, −8.622660064359537180054782148369, −7.85012335446375397211927605967, −6.88132771167523501727048006105, −6.13665570921498613856783777899, −5.22036263799560420434979944769, −3.53785760250028641231909624145, −2.83453274847513984901259634389, −1.25187849366145909565766760715,
0.35141758459469523762374816199, 1.83437628404043453179665608182, 3.18299540381328235639311594359, 4.93396687169036100051406797646, 5.47234094758701315865337870288, 6.50954892427541359935705242363, 7.31747629765421286380959704523, 8.198549754217040371421530291092, 8.896791225522249357400337923944, 9.817556179519680284953946207419