L(s) = 1 | + (1.39 + 0.226i)2-s − 1.79·3-s + (1.89 + 0.632i)4-s − i·5-s + (−2.49 − 0.405i)6-s + (2.50 + 1.31i)8-s + 0.206·9-s + (0.226 − 1.39i)10-s − 4.23i·11-s + (−3.39 − 1.13i)12-s − 2.98i·13-s + 1.79i·15-s + (3.19 + 2.40i)16-s − 2.21i·17-s + (0.288 + 0.0468i)18-s − 4.56·19-s + ⋯ |
L(s) = 1 | + (0.987 + 0.160i)2-s − 1.03·3-s + (0.948 + 0.316i)4-s − 0.447i·5-s + (−1.02 − 0.165i)6-s + (0.885 + 0.464i)8-s + 0.0689·9-s + (0.0716 − 0.441i)10-s − 1.27i·11-s + (−0.980 − 0.327i)12-s − 0.827i·13-s + 0.462i·15-s + (0.799 + 0.600i)16-s − 0.537i·17-s + (0.0680 + 0.0110i)18-s − 1.04·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.381+0.924i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.381+0.924i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.381+0.924i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.381+0.924i)
|
Particular Values
L(1) |
≈ |
1.51216−1.01142i |
L(21) |
≈ |
1.51216−1.01142i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.226i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1+1.79T+3T2 |
| 11 | 1+4.23iT−11T2 |
| 13 | 1+2.98iT−13T2 |
| 17 | 1+2.21iT−17T2 |
| 19 | 1+4.56T+19T2 |
| 23 | 1+2.05iT−23T2 |
| 29 | 1−6.42T+29T2 |
| 31 | 1−2.40T+31T2 |
| 37 | 1+4.32T+37T2 |
| 41 | 1+4.88iT−41T2 |
| 43 | 1+12.3iT−43T2 |
| 47 | 1−6.76T+47T2 |
| 53 | 1+12.8T+53T2 |
| 59 | 1−13.9T+59T2 |
| 61 | 1+0.0226iT−61T2 |
| 67 | 1+5.06iT−67T2 |
| 71 | 1−4.07iT−71T2 |
| 73 | 1+3.33iT−73T2 |
| 79 | 1+3.62iT−79T2 |
| 83 | 1+11.7T+83T2 |
| 89 | 1−16.6iT−89T2 |
| 97 | 1−12.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39068338575000764683541923510, −8.738055548803464995958119190575, −8.170259809720899703315708461253, −6.91371453700344662864901152574, −6.15970526938683559674878080026, −5.48353481354280550800650916691, −4.83658603061008165604712878334, −3.68627202431535048534483963251, −2.56017685334787220028645031749, −0.68924937456661831979668879692,
1.65841459318702703338343320756, 2.83952580304490974326654684108, 4.26533076194721281399144350685, 4.76915837385436204244085073526, 5.90899891678267950857619664071, 6.53772971099338622716181743959, 7.14395508142578620562518687831, 8.347475558408541799108780353196, 9.775090377055800434000253901143, 10.37930904017656657574599863222