Properties

Label 2-980-28.27-c1-0-57
Degree $2$
Conductor $980$
Sign $0.381 + 0.924i$
Analytic cond. $7.82533$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.39 + 0.226i)2-s − 1.79·3-s + (1.89 + 0.632i)4-s i·5-s + (−2.49 − 0.405i)6-s + (2.50 + 1.31i)8-s + 0.206·9-s + (0.226 − 1.39i)10-s − 4.23i·11-s + (−3.39 − 1.13i)12-s − 2.98i·13-s + 1.79i·15-s + (3.19 + 2.40i)16-s − 2.21i·17-s + (0.288 + 0.0468i)18-s − 4.56·19-s + ⋯
L(s)  = 1  + (0.987 + 0.160i)2-s − 1.03·3-s + (0.948 + 0.316i)4-s − 0.447i·5-s + (−1.02 − 0.165i)6-s + (0.885 + 0.464i)8-s + 0.0689·9-s + (0.0716 − 0.441i)10-s − 1.27i·11-s + (−0.980 − 0.327i)12-s − 0.827i·13-s + 0.462i·15-s + (0.799 + 0.600i)16-s − 0.537i·17-s + (0.0680 + 0.0110i)18-s − 1.04·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.381 + 0.924i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.381 + 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $0.381 + 0.924i$
Analytic conductor: \(7.82533\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{980} (391, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :1/2),\ 0.381 + 0.924i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.51216 - 1.01142i\)
\(L(\frac12)\) \(\approx\) \(1.51216 - 1.01142i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.39 - 0.226i)T \)
5 \( 1 + iT \)
7 \( 1 \)
good3 \( 1 + 1.79T + 3T^{2} \)
11 \( 1 + 4.23iT - 11T^{2} \)
13 \( 1 + 2.98iT - 13T^{2} \)
17 \( 1 + 2.21iT - 17T^{2} \)
19 \( 1 + 4.56T + 19T^{2} \)
23 \( 1 + 2.05iT - 23T^{2} \)
29 \( 1 - 6.42T + 29T^{2} \)
31 \( 1 - 2.40T + 31T^{2} \)
37 \( 1 + 4.32T + 37T^{2} \)
41 \( 1 + 4.88iT - 41T^{2} \)
43 \( 1 + 12.3iT - 43T^{2} \)
47 \( 1 - 6.76T + 47T^{2} \)
53 \( 1 + 12.8T + 53T^{2} \)
59 \( 1 - 13.9T + 59T^{2} \)
61 \( 1 + 0.0226iT - 61T^{2} \)
67 \( 1 + 5.06iT - 67T^{2} \)
71 \( 1 - 4.07iT - 71T^{2} \)
73 \( 1 + 3.33iT - 73T^{2} \)
79 \( 1 + 3.62iT - 79T^{2} \)
83 \( 1 + 11.7T + 83T^{2} \)
89 \( 1 - 16.6iT - 89T^{2} \)
97 \( 1 - 12.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39068338575000764683541923510, −8.738055548803464995958119190575, −8.170259809720899703315708461253, −6.91371453700344662864901152574, −6.15970526938683559674878080026, −5.48353481354280550800650916691, −4.83658603061008165604712878334, −3.68627202431535048534483963251, −2.56017685334787220028645031749, −0.68924937456661831979668879692, 1.65841459318702703338343320756, 2.83952580304490974326654684108, 4.26533076194721281399144350685, 4.76915837385436204244085073526, 5.90899891678267950857619664071, 6.53772971099338622716181743959, 7.14395508142578620562518687831, 8.347475558408541799108780353196, 9.775090377055800434000253901143, 10.37930904017656657574599863222

Graph of the $Z$-function along the critical line