L(s) = 1 | + (−1.40 + 0.153i)2-s − 3.02·3-s + (1.95 − 0.432i)4-s + i·5-s + (4.25 − 0.465i)6-s + (−2.67 + 0.908i)8-s + 6.16·9-s + (−0.153 − 1.40i)10-s − 1.19i·11-s + (−5.91 + 1.30i)12-s + 4.83i·13-s − 3.02i·15-s + (3.62 − 1.68i)16-s − 2.54i·17-s + (−8.66 + 0.948i)18-s + 1.42·19-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.108i)2-s − 1.74·3-s + (0.976 − 0.216i)4-s + 0.447i·5-s + (1.73 − 0.190i)6-s + (−0.946 + 0.321i)8-s + 2.05·9-s + (−0.0486 − 0.444i)10-s − 0.360i·11-s + (−1.70 + 0.378i)12-s + 1.34i·13-s − 0.781i·15-s + (0.906 − 0.422i)16-s − 0.617i·17-s + (−2.04 + 0.223i)18-s + 0.326·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.475 - 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.475 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.386082 + 0.230153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.386082 + 0.230153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 - 0.153i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.02T + 3T^{2} \) |
| 11 | \( 1 + 1.19iT - 11T^{2} \) |
| 13 | \( 1 - 4.83iT - 13T^{2} \) |
| 17 | \( 1 + 2.54iT - 17T^{2} \) |
| 19 | \( 1 - 1.42T + 19T^{2} \) |
| 23 | \( 1 + 5.80iT - 23T^{2} \) |
| 29 | \( 1 - 0.774T + 29T^{2} \) |
| 31 | \( 1 + 6.63T + 31T^{2} \) |
| 37 | \( 1 - 5.10T + 37T^{2} \) |
| 41 | \( 1 + 7.46iT - 41T^{2} \) |
| 43 | \( 1 + 1.38iT - 43T^{2} \) |
| 47 | \( 1 + 1.07T + 47T^{2} \) |
| 53 | \( 1 - 3.36T + 53T^{2} \) |
| 59 | \( 1 - 9.88T + 59T^{2} \) |
| 61 | \( 1 - 9.59iT - 61T^{2} \) |
| 67 | \( 1 - 10.5iT - 67T^{2} \) |
| 71 | \( 1 - 16.3iT - 71T^{2} \) |
| 73 | \( 1 + 0.107iT - 73T^{2} \) |
| 79 | \( 1 - 10.7iT - 79T^{2} \) |
| 83 | \( 1 - 15.8T + 83T^{2} \) |
| 89 | \( 1 + 3.94iT - 89T^{2} \) |
| 97 | \( 1 - 8.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28718837474594195019096775498, −9.499312936267187978274478790564, −8.592384535622678917319266606737, −7.21819002777721775289708802232, −6.88624741141006407409826161059, −6.03742206803704338360754631077, −5.27924874069704078107152294118, −4.04635796927074233221216909370, −2.30569928391142649297529787300, −0.853091938055869321148336069514,
0.52970971591702678161680242371, 1.66655205768209936100384408262, 3.48713887503132056797990642323, 4.91988416082240105923491440859, 5.70785623240316560587641706742, 6.36675297799163314957922500135, 7.43389568244093916382121492152, 8.017650538476340565726848960437, 9.314912054397237174605545344245, 9.979580087196258398308353148089