L(s) = 1 | + (−0.431 + 1.34i)2-s − 2.73·3-s + (−1.62 − 1.16i)4-s + i·5-s + (1.18 − 3.68i)6-s + (2.26 − 1.69i)8-s + 4.49·9-s + (−1.34 − 0.431i)10-s + 0.100i·11-s + (4.45 + 3.18i)12-s + 4.11i·13-s − 2.73i·15-s + (1.29 + 3.78i)16-s + 5.39i·17-s + (−1.93 + 6.05i)18-s − 7.45·19-s + ⋯ |
L(s) = 1 | + (−0.305 + 0.952i)2-s − 1.58·3-s + (−0.813 − 0.581i)4-s + 0.447i·5-s + (0.482 − 1.50i)6-s + (0.801 − 0.597i)8-s + 1.49·9-s + (−0.425 − 0.136i)10-s + 0.0302i·11-s + (1.28 + 0.918i)12-s + 1.14i·13-s − 0.706i·15-s + (0.324 + 0.945i)16-s + 1.30i·17-s + (−0.456 + 1.42i)18-s − 1.71·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0936 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0936 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0159609 - 0.0145306i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0159609 - 0.0145306i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.431 - 1.34i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2.73T + 3T^{2} \) |
| 11 | \( 1 - 0.100iT - 11T^{2} \) |
| 13 | \( 1 - 4.11iT - 13T^{2} \) |
| 17 | \( 1 - 5.39iT - 17T^{2} \) |
| 19 | \( 1 + 7.45T + 19T^{2} \) |
| 23 | \( 1 + 1.50iT - 23T^{2} \) |
| 29 | \( 1 + 2.37T + 29T^{2} \) |
| 31 | \( 1 - 5.44T + 31T^{2} \) |
| 37 | \( 1 - 1.03T + 37T^{2} \) |
| 41 | \( 1 + 7.99iT - 41T^{2} \) |
| 43 | \( 1 - 7.04iT - 43T^{2} \) |
| 47 | \( 1 + 4.44T + 47T^{2} \) |
| 53 | \( 1 - 6.14T + 53T^{2} \) |
| 59 | \( 1 + 8.52T + 59T^{2} \) |
| 61 | \( 1 + 7.90iT - 61T^{2} \) |
| 67 | \( 1 + 0.109iT - 67T^{2} \) |
| 71 | \( 1 + 6.73iT - 71T^{2} \) |
| 73 | \( 1 + 6.14iT - 73T^{2} \) |
| 79 | \( 1 + 4.27iT - 79T^{2} \) |
| 83 | \( 1 + 6.50T + 83T^{2} \) |
| 89 | \( 1 - 3.19iT - 89T^{2} \) |
| 97 | \( 1 + 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66200280957688824501276178952, −9.944514214115670123752771964850, −8.897634822602480307847414937562, −8.005982374331299674038735516007, −6.85722922605407888362441904380, −6.39750799284345028197160857171, −5.85007132582902031942210715649, −4.68449435785633915520247434632, −4.07525684095318686190383268950, −1.72704745588461023320744729491,
0.01654873363547558612850072172, 1.08932325817906142941998688702, 2.66076770710514604013451107930, 4.12189405435643615181781047938, 4.94744332865852092403391246021, 5.63094307800189510559457409477, 6.71669237223918302558617976181, 7.80554704632048869726355063020, 8.683565046654615710599869089524, 9.715894917743391273712033004848