L(s) = 1 | + (−1.14 − 0.826i)2-s − 1.52i·3-s + (0.632 + 1.89i)4-s + (0.0967 − 2.23i)5-s + (−1.25 + 1.74i)6-s + (0.843 − 2.69i)8-s + 0.679·9-s + (−1.95 + 2.48i)10-s + 4.56i·11-s + (2.89 − 0.963i)12-s − 2.19·13-s + (−3.40 − 0.147i)15-s + (−3.19 + 2.40i)16-s − 6.22·17-s + (−0.779 − 0.561i)18-s − 3.83·19-s + ⋯ |
L(s) = 1 | + (−0.811 − 0.584i)2-s − 0.879i·3-s + (0.316 + 0.948i)4-s + (0.0432 − 0.999i)5-s + (−0.514 + 0.713i)6-s + (0.298 − 0.954i)8-s + 0.226·9-s + (−0.619 + 0.785i)10-s + 1.37i·11-s + (0.834 − 0.278i)12-s − 0.608·13-s + (−0.878 − 0.0380i)15-s + (−0.799 + 0.600i)16-s − 1.50·17-s + (−0.183 − 0.132i)18-s − 0.879·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.422−0.906i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.422−0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.422−0.906i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.422−0.906i)
|
Particular Values
L(1) |
≈ |
0.125837+0.197398i |
L(21) |
≈ |
0.125837+0.197398i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.14+0.826i)T |
| 5 | 1+(−0.0967+2.23i)T |
| 7 | 1 |
good | 3 | 1+1.52iT−3T2 |
| 11 | 1−4.56iT−11T2 |
| 13 | 1+2.19T+13T2 |
| 17 | 1+6.22T+17T2 |
| 19 | 1+3.83T+19T2 |
| 23 | 1+0.430T+23T2 |
| 29 | 1+0.473T+29T2 |
| 31 | 1+7.59T+31T2 |
| 37 | 1+8.44iT−37T2 |
| 41 | 1+1.45iT−41T2 |
| 43 | 1+8.58T+43T2 |
| 47 | 1−4.48iT−47T2 |
| 53 | 1−9.23iT−53T2 |
| 59 | 1−3.13T+59T2 |
| 61 | 1+5.71iT−61T2 |
| 67 | 1+14.9T+67T2 |
| 71 | 1+4.57iT−71T2 |
| 73 | 1−12.2T+73T2 |
| 79 | 1+6.20iT−79T2 |
| 83 | 1+7.69iT−83T2 |
| 89 | 1−9.32iT−89T2 |
| 97 | 1+9.05T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.314974476410798558292259893383, −8.778265275489245731878957699367, −7.70874185771264028607160162006, −7.22984499001085430621457423945, −6.34309793249331680148470293743, −4.76968991588178773404521646430, −4.07824808300764562922634013702, −2.19624139128587604962509266734, −1.75053356044522300717425707235, −0.13068561236500856471505286186,
2.06034527519330873109769291952, 3.34137533968933603485512149029, 4.51449736796403513373208123139, 5.56284275249830187530358678225, 6.54255554473347296490868519582, 7.07242693405467271174657273243, 8.248640082670736317885814853158, 8.901059161446712411563714098422, 9.803565098047109107924395206591, 10.40256147771747924780445456387