L(s) = 1 | + (1.36 + 0.385i)2-s − 0.423i·3-s + (1.70 + 1.04i)4-s + (1.74 + 1.39i)5-s + (0.163 − 0.576i)6-s + (1.91 + 2.08i)8-s + 2.82·9-s + (1.83 + 2.57i)10-s − 4.89i·11-s + (0.443 − 0.721i)12-s + 2.54·13-s + (0.591 − 0.738i)15-s + (1.80 + 3.57i)16-s − 5.11·17-s + (3.83 + 1.08i)18-s − 6.26·19-s + ⋯ |
L(s) = 1 | + (0.962 + 0.272i)2-s − 0.244i·3-s + (0.851 + 0.524i)4-s + (0.780 + 0.625i)5-s + (0.0665 − 0.235i)6-s + (0.676 + 0.736i)8-s + 0.940·9-s + (0.580 + 0.814i)10-s − 1.47i·11-s + (0.128 − 0.208i)12-s + 0.706·13-s + (0.152 − 0.190i)15-s + (0.450 + 0.892i)16-s − 1.24·17-s + (0.904 + 0.256i)18-s − 1.43·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.40829 + 0.871933i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.40829 + 0.871933i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.385i)T \) |
| 5 | \( 1 + (-1.74 - 1.39i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 0.423iT - 3T^{2} \) |
| 11 | \( 1 + 4.89iT - 11T^{2} \) |
| 13 | \( 1 - 2.54T + 13T^{2} \) |
| 17 | \( 1 + 5.11T + 17T^{2} \) |
| 19 | \( 1 + 6.26T + 19T^{2} \) |
| 23 | \( 1 - 4.63T + 23T^{2} \) |
| 29 | \( 1 + 1.88T + 29T^{2} \) |
| 31 | \( 1 - 1.47T + 31T^{2} \) |
| 37 | \( 1 - 2.35iT - 37T^{2} \) |
| 41 | \( 1 + 7.05iT - 41T^{2} \) |
| 43 | \( 1 + 10.7T + 43T^{2} \) |
| 47 | \( 1 - 12.2iT - 47T^{2} \) |
| 53 | \( 1 - 2.23iT - 53T^{2} \) |
| 59 | \( 1 - 5.68T + 59T^{2} \) |
| 61 | \( 1 - 3.87iT - 61T^{2} \) |
| 67 | \( 1 - 0.889T + 67T^{2} \) |
| 71 | \( 1 + 14.3iT - 71T^{2} \) |
| 73 | \( 1 + 7.87T + 73T^{2} \) |
| 79 | \( 1 + 4.63iT - 79T^{2} \) |
| 83 | \( 1 + 4.32iT - 83T^{2} \) |
| 89 | \( 1 + 2.18iT - 89T^{2} \) |
| 97 | \( 1 - 3.42T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50357826956675770466078578168, −9.072158111781253152280009490405, −8.330484085943272184587698233461, −7.17251964365699594897057207787, −6.43436844308908787576074064281, −6.02707118301786514825997378751, −4.82853127387097897905600753542, −3.80075058144729022006812736136, −2.79309014095342678315071389019, −1.66678782253802865080204071754,
1.55321676568007244344693241636, 2.31675943873516435726362454523, 3.97332543248561962126757533927, 4.59199995141487616872482815481, 5.29823426016544457168380586580, 6.62304856897954652618755288538, 6.86957465747803304222051951321, 8.361534572258830552888583528444, 9.356949741947129691416287042390, 10.08144331289907090170611278297