L(s) = 1 | + (1.23 − 0.691i)2-s + 2.08i·3-s + (1.04 − 1.70i)4-s + (1.52 + 1.63i)5-s + (1.43 + 2.56i)6-s + (0.107 − 2.82i)8-s − 1.32·9-s + (3.01 + 0.967i)10-s + 0.775i·11-s + (3.54 + 2.17i)12-s + 4.18·13-s + (−3.40 + 3.16i)15-s + (−1.82 − 3.56i)16-s − 4.18·17-s + (−1.63 + 0.917i)18-s + 4.88·19-s + ⋯ |
L(s) = 1 | + (0.872 − 0.488i)2-s + 1.20i·3-s + (0.521 − 0.853i)4-s + (0.680 + 0.732i)5-s + (0.587 + 1.04i)6-s + (0.0381 − 0.999i)8-s − 0.442·9-s + (0.952 + 0.305i)10-s + 0.233i·11-s + (1.02 + 0.626i)12-s + 1.16·13-s + (−0.879 + 0.817i)15-s + (−0.455 − 0.890i)16-s − 1.01·17-s + (−0.385 + 0.216i)18-s + 1.12·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.97837 + 0.956472i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.97837 + 0.956472i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.23 + 0.691i)T \) |
| 5 | \( 1 + (-1.52 - 1.63i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 2.08iT - 3T^{2} \) |
| 11 | \( 1 - 0.775iT - 11T^{2} \) |
| 13 | \( 1 - 4.18T + 13T^{2} \) |
| 17 | \( 1 + 4.18T + 17T^{2} \) |
| 19 | \( 1 - 4.88T + 19T^{2} \) |
| 23 | \( 1 + 1.89T + 23T^{2} \) |
| 29 | \( 1 - 9.98T + 29T^{2} \) |
| 31 | \( 1 + 10.3T + 31T^{2} \) |
| 37 | \( 1 + 3.41iT - 37T^{2} \) |
| 41 | \( 1 + 3.02iT - 41T^{2} \) |
| 43 | \( 1 + 9.19T + 43T^{2} \) |
| 47 | \( 1 - 8.27iT - 47T^{2} \) |
| 53 | \( 1 - 2.59iT - 53T^{2} \) |
| 59 | \( 1 - 4.60T + 59T^{2} \) |
| 61 | \( 1 + 3.26iT - 61T^{2} \) |
| 67 | \( 1 - 2.27T + 67T^{2} \) |
| 71 | \( 1 + 4.41iT - 71T^{2} \) |
| 73 | \( 1 - 2.74T + 73T^{2} \) |
| 79 | \( 1 + 14.2iT - 79T^{2} \) |
| 83 | \( 1 - 2.36iT - 83T^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 14.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22855483008508176521143140102, −9.596631463848535536251190105406, −8.832841103149247822258392819685, −7.25086654443151867023433537668, −6.38834419807367254358752829046, −5.56637642331596924879835293300, −4.70516740590761368133285404937, −3.76096368467069700406776971446, −3.02725813396396787400095023420, −1.71847124535101942210733085644,
1.28340941674270875036503848036, 2.33808275761937587480715088067, 3.67356898429497976250154378537, 4.86813111164147917939579120511, 5.73224022414588935230514452753, 6.50457073460835162319336423013, 7.07841687150024611595913136353, 8.290578291803833227825011983973, 8.567403604026237374298740195442, 9.846317738889555115797090941600