L(s) = 1 | + (−1.14 + 0.826i)2-s + 1.52i·3-s + (0.632 − 1.89i)4-s + (0.0967 + 2.23i)5-s + (−1.25 − 1.74i)6-s + (0.843 + 2.69i)8-s + 0.679·9-s + (−1.95 − 2.48i)10-s − 4.56i·11-s + (2.89 + 0.963i)12-s − 2.19·13-s + (−3.40 + 0.147i)15-s + (−3.19 − 2.40i)16-s − 6.22·17-s + (−0.779 + 0.561i)18-s − 3.83·19-s + ⋯ |
L(s) = 1 | + (−0.811 + 0.584i)2-s + 0.879i·3-s + (0.316 − 0.948i)4-s + (0.0432 + 0.999i)5-s + (−0.514 − 0.713i)6-s + (0.298 + 0.954i)8-s + 0.226·9-s + (−0.619 − 0.785i)10-s − 1.37i·11-s + (0.834 + 0.278i)12-s − 0.608·13-s + (−0.878 + 0.0380i)15-s + (−0.799 − 0.600i)16-s − 1.50·17-s + (−0.183 + 0.132i)18-s − 0.879·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.422 + 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.422 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.125837 - 0.197398i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.125837 - 0.197398i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.14 - 0.826i)T \) |
| 5 | \( 1 + (-0.0967 - 2.23i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 1.52iT - 3T^{2} \) |
| 11 | \( 1 + 4.56iT - 11T^{2} \) |
| 13 | \( 1 + 2.19T + 13T^{2} \) |
| 17 | \( 1 + 6.22T + 17T^{2} \) |
| 19 | \( 1 + 3.83T + 19T^{2} \) |
| 23 | \( 1 + 0.430T + 23T^{2} \) |
| 29 | \( 1 + 0.473T + 29T^{2} \) |
| 31 | \( 1 + 7.59T + 31T^{2} \) |
| 37 | \( 1 - 8.44iT - 37T^{2} \) |
| 41 | \( 1 - 1.45iT - 41T^{2} \) |
| 43 | \( 1 + 8.58T + 43T^{2} \) |
| 47 | \( 1 + 4.48iT - 47T^{2} \) |
| 53 | \( 1 + 9.23iT - 53T^{2} \) |
| 59 | \( 1 - 3.13T + 59T^{2} \) |
| 61 | \( 1 - 5.71iT - 61T^{2} \) |
| 67 | \( 1 + 14.9T + 67T^{2} \) |
| 71 | \( 1 - 4.57iT - 71T^{2} \) |
| 73 | \( 1 - 12.2T + 73T^{2} \) |
| 79 | \( 1 - 6.20iT - 79T^{2} \) |
| 83 | \( 1 - 7.69iT - 83T^{2} \) |
| 89 | \( 1 + 9.32iT - 89T^{2} \) |
| 97 | \( 1 + 9.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40256147771747924780445456387, −9.803565098047109107924395206591, −8.901059161446712411563714098422, −8.248640082670736317885814853158, −7.07242693405467271174657273243, −6.54255554473347296490868519582, −5.56284275249830187530358678225, −4.51449736796403513373208123139, −3.34137533968933603485512149029, −2.06034527519330873109769291952,
0.13068561236500856471505286186, 1.75053356044522300717425707235, 2.19624139128587604962509266734, 4.07824808300764562922634013702, 4.76968991588178773404521646430, 6.34309793249331680148470293743, 7.22984499001085430621457423945, 7.70874185771264028607160162006, 8.778265275489245731878957699367, 9.314974476410798558292259893383