L(s) = 1 | + (−0.255 − 1.39i)2-s − 3.18i·3-s + (−1.86 + 0.711i)4-s + (−1.80 − 1.31i)5-s + (−4.43 + 0.815i)6-s + (1.46 + 2.41i)8-s − 7.15·9-s + (−1.36 + 2.85i)10-s + 4.51i·11-s + (2.26 + 5.95i)12-s + 2.22·13-s + (−4.19 + 5.75i)15-s + (2.98 − 2.66i)16-s + 2.52·17-s + (1.83 + 9.94i)18-s − 5.21·19-s + ⋯ |
L(s) = 1 | + (−0.180 − 0.983i)2-s − 1.83i·3-s + (−0.934 + 0.355i)4-s + (−0.808 − 0.588i)5-s + (−1.80 + 0.332i)6-s + (0.519 + 0.854i)8-s − 2.38·9-s + (−0.432 + 0.901i)10-s + 1.36i·11-s + (0.654 + 1.71i)12-s + 0.617·13-s + (−1.08 + 1.48i)15-s + (0.746 − 0.665i)16-s + 0.613·17-s + (0.431 + 2.34i)18-s − 1.19·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.987−0.155i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.987−0.155i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.987−0.155i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.987−0.155i)
|
Particular Values
L(1) |
≈ |
0.0585708+0.00456803i |
L(21) |
≈ |
0.0585708+0.00456803i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.255+1.39i)T |
| 5 | 1+(1.80+1.31i)T |
| 7 | 1 |
good | 3 | 1+3.18iT−3T2 |
| 11 | 1−4.51iT−11T2 |
| 13 | 1−2.22T+13T2 |
| 17 | 1−2.52T+17T2 |
| 19 | 1+5.21T+19T2 |
| 23 | 1+1.71T+23T2 |
| 29 | 1+2.31T+29T2 |
| 31 | 1+4.62T+31T2 |
| 37 | 1+0.336iT−37T2 |
| 41 | 1−3.28iT−41T2 |
| 43 | 1+6.66T+43T2 |
| 47 | 1+1.44iT−47T2 |
| 53 | 1+10.0iT−53T2 |
| 59 | 1+3.20T+59T2 |
| 61 | 1−6.05iT−61T2 |
| 67 | 1+11.1T+67T2 |
| 71 | 1−9.15iT−71T2 |
| 73 | 1+3.24T+73T2 |
| 79 | 1−14.2iT−79T2 |
| 83 | 1+11.3iT−83T2 |
| 89 | 1+15.2iT−89T2 |
| 97 | 1−4.49T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10248197086586251374156161763, −8.948634328968352387629504835286, −8.333375885210607635429211416127, −7.64916505608511568100547127166, −6.95337969062812357787386524227, −5.72318156809775550970109897559, −4.58303605249822891869279623967, −3.46265081698509650813120038202, −2.12803543675313195275432005969, −1.36240626114489518638863736639,
0.03073425565956456117160118871, 3.26757429355933890290551772052, 3.81320717641160889489839966853, 4.65940329975623690257479929180, 5.72746910253823979590998429142, 6.30130813880881510649469949723, 7.67876197769553985473105604012, 8.506593809172169452580460588727, 8.944409427162867363776627477989, 9.940154763373168229873236718027