L(s) = 1 | + (−0.255 − 1.39i)2-s − 3.18i·3-s + (−1.86 + 0.711i)4-s + (−1.80 − 1.31i)5-s + (−4.43 + 0.815i)6-s + (1.46 + 2.41i)8-s − 7.15·9-s + (−1.36 + 2.85i)10-s + 4.51i·11-s + (2.26 + 5.95i)12-s + 2.22·13-s + (−4.19 + 5.75i)15-s + (2.98 − 2.66i)16-s + 2.52·17-s + (1.83 + 9.94i)18-s − 5.21·19-s + ⋯ |
L(s) = 1 | + (−0.180 − 0.983i)2-s − 1.83i·3-s + (−0.934 + 0.355i)4-s + (−0.808 − 0.588i)5-s + (−1.80 + 0.332i)6-s + (0.519 + 0.854i)8-s − 2.38·9-s + (−0.432 + 0.901i)10-s + 1.36i·11-s + (0.654 + 1.71i)12-s + 0.617·13-s + (−1.08 + 1.48i)15-s + (0.746 − 0.665i)16-s + 0.613·17-s + (0.431 + 2.34i)18-s − 1.19·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.155i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.155i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0585708 + 0.00456803i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0585708 + 0.00456803i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.255 + 1.39i)T \) |
| 5 | \( 1 + (1.80 + 1.31i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.18iT - 3T^{2} \) |
| 11 | \( 1 - 4.51iT - 11T^{2} \) |
| 13 | \( 1 - 2.22T + 13T^{2} \) |
| 17 | \( 1 - 2.52T + 17T^{2} \) |
| 19 | \( 1 + 5.21T + 19T^{2} \) |
| 23 | \( 1 + 1.71T + 23T^{2} \) |
| 29 | \( 1 + 2.31T + 29T^{2} \) |
| 31 | \( 1 + 4.62T + 31T^{2} \) |
| 37 | \( 1 + 0.336iT - 37T^{2} \) |
| 41 | \( 1 - 3.28iT - 41T^{2} \) |
| 43 | \( 1 + 6.66T + 43T^{2} \) |
| 47 | \( 1 + 1.44iT - 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 3.20T + 59T^{2} \) |
| 61 | \( 1 - 6.05iT - 61T^{2} \) |
| 67 | \( 1 + 11.1T + 67T^{2} \) |
| 71 | \( 1 - 9.15iT - 71T^{2} \) |
| 73 | \( 1 + 3.24T + 73T^{2} \) |
| 79 | \( 1 - 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 11.3iT - 83T^{2} \) |
| 89 | \( 1 + 15.2iT - 89T^{2} \) |
| 97 | \( 1 - 4.49T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10248197086586251374156161763, −8.948634328968352387629504835286, −8.333375885210607635429211416127, −7.64916505608511568100547127166, −6.95337969062812357787386524227, −5.72318156809775550970109897559, −4.58303605249822891869279623967, −3.46265081698509650813120038202, −2.12803543675313195275432005969, −1.36240626114489518638863736639,
0.03073425565956456117160118871, 3.26757429355933890290551772052, 3.81320717641160889489839966853, 4.65940329975623690257479929180, 5.72746910253823979590998429142, 6.30130813880881510649469949723, 7.67876197769553985473105604012, 8.506593809172169452580460588727, 8.944409427162867363776627477989, 9.940154763373168229873236718027