Properties

Label 2-980-1.1-c1-0-6
Degree $2$
Conductor $980$
Sign $1$
Analytic cond. $7.82533$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·3-s − 5-s + 2.82·9-s + 1.82·11-s + 6.41·13-s − 2.41·15-s + 3.58·17-s − 7.65·19-s + 3.41·23-s + 25-s − 0.414·27-s − 4.65·29-s + 7.41·31-s + 4.41·33-s − 0.585·37-s + 15.4·39-s + 3.41·41-s + 0.343·43-s − 2.82·45-s + 10.8·47-s + 8.65·51-s − 12.2·53-s − 1.82·55-s − 18.4·57-s + 0.585·59-s + 10.8·61-s − 6.41·65-s + ⋯
L(s)  = 1  + 1.39·3-s − 0.447·5-s + 0.942·9-s + 0.551·11-s + 1.77·13-s − 0.623·15-s + 0.869·17-s − 1.75·19-s + 0.711·23-s + 0.200·25-s − 0.0797·27-s − 0.864·29-s + 1.33·31-s + 0.768·33-s − 0.0963·37-s + 2.47·39-s + 0.533·41-s + 0.0523·43-s − 0.421·45-s + 1.58·47-s + 1.21·51-s − 1.68·53-s − 0.246·55-s − 2.44·57-s + 0.0762·59-s + 1.38·61-s − 0.795·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(7.82533\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{980} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.567806544\)
\(L(\frac12)\) \(\approx\) \(2.567806544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good3 \( 1 - 2.41T + 3T^{2} \)
11 \( 1 - 1.82T + 11T^{2} \)
13 \( 1 - 6.41T + 13T^{2} \)
17 \( 1 - 3.58T + 17T^{2} \)
19 \( 1 + 7.65T + 19T^{2} \)
23 \( 1 - 3.41T + 23T^{2} \)
29 \( 1 + 4.65T + 29T^{2} \)
31 \( 1 - 7.41T + 31T^{2} \)
37 \( 1 + 0.585T + 37T^{2} \)
41 \( 1 - 3.41T + 41T^{2} \)
43 \( 1 - 0.343T + 43T^{2} \)
47 \( 1 - 10.8T + 47T^{2} \)
53 \( 1 + 12.2T + 53T^{2} \)
59 \( 1 - 0.585T + 59T^{2} \)
61 \( 1 - 10.8T + 61T^{2} \)
67 \( 1 - 3.07T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 - 10.8T + 73T^{2} \)
79 \( 1 + 15.1T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 16.9T + 89T^{2} \)
97 \( 1 + 9.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.816119784017524976327792242485, −8.831624190923958194825477737784, −8.523735596558068509988176447842, −7.75875209760885542833696795654, −6.72810602975894477120995168291, −5.82417046577116847520388913109, −4.24294711361137898487129725041, −3.69050598221504642462385922343, −2.70352993732482987557137195511, −1.36532043253345373940759128199, 1.36532043253345373940759128199, 2.70352993732482987557137195511, 3.69050598221504642462385922343, 4.24294711361137898487129725041, 5.82417046577116847520388913109, 6.72810602975894477120995168291, 7.75875209760885542833696795654, 8.523735596558068509988176447842, 8.831624190923958194825477737784, 9.816119784017524976327792242485

Graph of the $Z$-function along the critical line