Properties

Label 2-98-7.4-c7-0-6
Degree $2$
Conductor $98$
Sign $-0.991 + 0.126i$
Analytic cond. $30.6137$
Root an. cond. $5.53296$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 + 6.92i)2-s + (−6 + 10.3i)3-s + (−31.9 + 55.4i)4-s + (105 + 181. i)5-s − 96·6-s − 511.·8-s + (1.02e3 + 1.76e3i)9-s + (−840 + 1.45e3i)10-s + (−546 + 945. i)11-s + (−384. − 665. i)12-s + 1.38e3·13-s − 2.52e3·15-s + (−2.04e3 − 3.54e3i)16-s + (−7.35e3 + 1.27e4i)17-s + (−8.17e3 + 1.41e4i)18-s + (1.99e4 + 3.45e4i)19-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.128 + 0.222i)3-s + (−0.249 + 0.433i)4-s + (0.375 + 0.650i)5-s − 0.181·6-s − 0.353·8-s + (0.467 + 0.809i)9-s + (−0.265 + 0.460i)10-s + (−0.123 + 0.214i)11-s + (−0.0641 − 0.111i)12-s + 0.174·13-s − 0.192·15-s + (−0.125 − 0.216i)16-s + (−0.362 + 0.628i)17-s + (−0.330 + 0.572i)18-s + (0.667 + 1.15i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $-0.991 + 0.126i$
Analytic conductor: \(30.6137\)
Root analytic conductor: \(5.53296\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :7/2),\ -0.991 + 0.126i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.109547 - 1.72623i\)
\(L(\frac12)\) \(\approx\) \(0.109547 - 1.72623i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 - 6.92i)T \)
7 \( 1 \)
good3 \( 1 + (6 - 10.3i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + (-105 - 181. i)T + (-3.90e4 + 6.76e4i)T^{2} \)
11 \( 1 + (546 - 945. i)T + (-9.74e6 - 1.68e7i)T^{2} \)
13 \( 1 - 1.38e3T + 6.27e7T^{2} \)
17 \( 1 + (7.35e3 - 1.27e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-1.99e4 - 3.45e4i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (3.43e4 + 5.95e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + 1.02e5T + 1.72e10T^{2} \)
31 \( 1 + (1.13e5 - 1.97e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + (8.02e4 + 1.39e5i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 - 1.08e4T + 1.94e11T^{2} \)
43 \( 1 + 6.30e5T + 2.71e11T^{2} \)
47 \( 1 + (2.36e5 + 4.09e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + (-7.47e5 + 1.29e6i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (1.32e6 - 2.28e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (4.13e5 + 7.16e5i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-6.30e4 + 1.09e5i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + 1.41e6T + 9.09e12T^{2} \)
73 \( 1 + (4.90e5 - 8.48e5i)T + (-5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (-1.78e6 - 3.08e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 - 5.67e6T + 2.71e13T^{2} \)
89 \( 1 + (-5.97e6 - 1.03e7i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 - 8.68e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25482115771916660129935547350, −12.20508231084825589085881690460, −10.74376527022764659031765963618, −10.01980596631144135900057132887, −8.474638385277925932249976451089, −7.33856453524129645067889982524, −6.22492535132899900744500482783, −5.04577285125286818961625433879, −3.68551956851046683671876064052, −1.99558184457698980467203249021, 0.47453598492392218486554615297, 1.68860387369152877802863941368, 3.36962141997240369866973063370, 4.79890139004292548580147213950, 5.95128066347874311746543461843, 7.35517367024588571213581047758, 9.073567673262579264793048932462, 9.666950857955463661613049163198, 11.17613112240268898093399358682, 11.97340846078059885743927971798

Graph of the $Z$-function along the critical line