| L(s) = 1 | + (2 + 3.46i)2-s + (−5 + 8.66i)3-s + (−7.99 + 13.8i)4-s + (−42 − 72.7i)5-s − 40·6-s − 63.9·8-s + (71.4 + 123. i)9-s + (168 − 290. i)10-s + (168 − 290. i)11-s + (−80 − 138. i)12-s + 584·13-s + 840.·15-s + (−128 − 221. i)16-s + (729 − 1.26e3i)17-s + (−286 + 495. i)18-s + (−235 − 407. i)19-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.320 + 0.555i)3-s + (−0.249 + 0.433i)4-s + (−0.751 − 1.30i)5-s − 0.453·6-s − 0.353·8-s + (0.294 + 0.509i)9-s + (0.531 − 0.920i)10-s + (0.418 − 0.725i)11-s + (−0.160 − 0.277i)12-s + 0.958·13-s + 0.963·15-s + (−0.125 − 0.216i)16-s + (0.611 − 1.05i)17-s + (−0.208 + 0.360i)18-s + (−0.149 − 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.69684 + 0.107682i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.69684 + 0.107682i\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-2 - 3.46i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (5 - 8.66i)T + (-121.5 - 210. i)T^{2} \) |
| 5 | \( 1 + (42 + 72.7i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-168 + 290. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 584T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-729 + 1.26e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (235 + 407. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.10e3 - 3.63e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 4.86e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.68e3 + 6.38e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (7.16e3 + 1.24e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 6.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 3.70e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-906 - 1.56e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.86e4 + 3.22e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.71e4 - 2.97e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.22e4 + 2.11e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-8.72e3 + 1.51e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 2.82e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.80e3 - 3.11e3i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.14e4 + 3.71e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 3.52e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (1.33e4 + 2.31e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.69e4T + 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14259625871645937250728344062, −11.93817630139947359479010393122, −11.10586620967538715037104926787, −9.445144352133877543342587753048, −8.501014717310190225776505175163, −7.44199405538043889081754776753, −5.70288037548559223135520407120, −4.76501827757681356180032702853, −3.69738360073889846122990808383, −0.77764182036053384191011107479,
1.22807131874600902171485289198, 3.07045766800819100790285523428, 4.22188121943707209568416426724, 6.28277895233798925854182952573, 6.95997025989419267056742272010, 8.461487243225759803942694025533, 10.17690052465870558289914653280, 10.89263815807822240149240516640, 12.03905232296589243447536208231, 12.56882496479216782455908794931