L(s) = 1 | + (2 − 3.46i)2-s + (5 + 8.66i)3-s + (−7.99 − 13.8i)4-s + (42 − 72.7i)5-s + 40·6-s − 63.9·8-s + (71.4 − 123. i)9-s + (−168 − 290. i)10-s + (168 + 290. i)11-s + (80 − 138. i)12-s − 584·13-s + 840.·15-s + (−128 + 221. i)16-s + (−729 − 1.26e3i)17-s + (−286 − 495. i)18-s + (235 − 407. i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.320 + 0.555i)3-s + (−0.249 − 0.433i)4-s + (0.751 − 1.30i)5-s + 0.453·6-s − 0.353·8-s + (0.294 − 0.509i)9-s + (−0.531 − 0.920i)10-s + (0.418 + 0.725i)11-s + (0.160 − 0.277i)12-s − 0.958·13-s + 0.963·15-s + (−0.125 + 0.216i)16-s + (−0.611 − 1.05i)17-s + (−0.208 − 0.360i)18-s + (0.149 − 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.53257 - 2.01454i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.53257 - 2.01454i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 + 3.46i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-5 - 8.66i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (-42 + 72.7i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-168 - 290. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 584T + 3.71e5T^{2} \) |
| 17 | \( 1 + (729 + 1.26e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-235 + 407. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.10e3 + 3.63e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 4.86e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (3.68e3 + 6.38e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (7.16e3 - 1.24e4i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 6.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 3.70e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (906 - 1.56e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.86e4 - 3.22e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.71e4 - 2.97e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.22e4 + 2.11e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-8.72e3 - 1.51e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 2.82e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-1.80e3 - 3.11e3i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.14e4 - 3.71e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 3.52e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.33e4 + 2.31e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.69e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.60107257665548804391872865371, −11.89767738394204554095450382699, −10.22749580723280521425237582562, −9.447447841024917438386079117027, −8.802608064368352772233621908433, −6.78169687999713946472967512441, −5.03261430322521054081143665524, −4.40404859765846826812380961120, −2.50529295948567086069025903300, −0.884845058604856041388485971121,
2.00664590801002533996666942040, 3.39861724708033735751536243205, 5.35684189062917643696109525949, 6.64656469033934855397053644493, 7.30263430629295054783955835797, 8.647096181778386197190966858699, 10.07722999777935460457955803517, 11.09129105595796595572184127104, 12.56550024395362911986304780062, 13.59211709189217075425446633789