L(s) = 1 | + (−1 + 1.73i)2-s + (−2.5 − 4.33i)3-s + (−1.99 − 3.46i)4-s + (−4.5 + 7.79i)5-s + 10·6-s + 7.99·8-s + (0.999 − 1.73i)9-s + (−9 − 15.5i)10-s + (28.5 + 49.3i)11-s + (−10 + 17.3i)12-s + 70·13-s + 45.0·15-s + (−8 + 13.8i)16-s + (25.5 + 44.1i)17-s + (1.99 + 3.46i)18-s + (2.5 − 4.33i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.481 − 0.833i)3-s + (−0.249 − 0.433i)4-s + (−0.402 + 0.697i)5-s + 0.680·6-s + 0.353·8-s + (0.0370 − 0.0641i)9-s + (−0.284 − 0.492i)10-s + (0.781 + 1.35i)11-s + (−0.240 + 0.416i)12-s + 1.49·13-s + 0.774·15-s + (−0.125 + 0.216i)16-s + (0.363 + 0.630i)17-s + (0.0261 + 0.0453i)18-s + (0.0301 − 0.0522i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.943948 + 0.467940i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.943948 + 0.467940i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - 1.73i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (2.5 + 4.33i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (4.5 - 7.79i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-28.5 - 49.3i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 70T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-25.5 - 44.1i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-2.5 + 4.33i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (34.5 - 59.7i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 114T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-11.5 - 19.9i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-126.5 + 219. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 42T + 6.89e4T^{2} \) |
| 43 | \( 1 + 124T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-100.5 + 174. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-196.5 - 340. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-109.5 - 189. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (354.5 - 614. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (209.5 + 362. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 96T + 3.57e5T^{2} \) |
| 73 | \( 1 + (156.5 + 271. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (230.5 - 399. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 588T + 5.71e5T^{2} \) |
| 89 | \( 1 + (508.5 - 880. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.83e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62372981054648011903105589250, −12.49072710563623397200206454905, −11.53567716790889727014184431275, −10.38126970777258602197910541954, −9.068772783441522075679089040429, −7.65084223796769923537305049754, −6.83363429475851773424809129261, −5.96103970597982696455029135360, −3.95753299742786935718457781720, −1.37839869608197073295916704853,
0.887277841584653983046864472412, 3.52422175297173536092827535390, 4.65532943160658943114519691213, 6.13690516830978083856269375870, 8.181234144018956430811129151642, 8.946764877558296449285425864421, 10.19176681065728094249705888841, 11.18782076071581031500476251414, 11.81024008987487486658733642658, 13.16259342003854485871889582038