Properties

Label 2-98-49.15-c3-0-7
Degree $2$
Conductor $98$
Sign $0.543 + 0.839i$
Analytic cond. $5.78218$
Root an. cond. $2.40461$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.445 − 1.94i)2-s + (−2.69 + 3.38i)3-s + (−3.60 − 1.73i)4-s + (4.53 − 5.69i)5-s + (5.39 + 6.77i)6-s + (18.2 + 3.26i)7-s + (−4.98 + 6.25i)8-s + (1.83 + 8.04i)9-s + (−9.07 − 11.3i)10-s + (14.6 − 64.2i)11-s + (15.6 − 7.51i)12-s + (9.14 − 40.0i)13-s + (14.4 − 34.0i)14-s + (7.01 + 30.7i)15-s + (9.97 + 12.5i)16-s + (68.4 − 32.9i)17-s + ⋯
L(s)  = 1  + (0.157 − 0.689i)2-s + (−0.519 + 0.651i)3-s + (−0.450 − 0.216i)4-s + (0.405 − 0.508i)5-s + (0.367 + 0.460i)6-s + (0.984 + 0.176i)7-s + (−0.220 + 0.276i)8-s + (0.0679 + 0.297i)9-s + (−0.287 − 0.359i)10-s + (0.401 − 1.76i)11-s + (0.375 − 0.180i)12-s + (0.195 − 0.855i)13-s + (0.276 − 0.650i)14-s + (0.120 + 0.528i)15-s + (0.155 + 0.195i)16-s + (0.976 − 0.470i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $0.543 + 0.839i$
Analytic conductor: \(5.78218\)
Root analytic conductor: \(2.40461\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :3/2),\ 0.543 + 0.839i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.42028 - 0.772102i\)
\(L(\frac12)\) \(\approx\) \(1.42028 - 0.772102i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.445 + 1.94i)T \)
7 \( 1 + (-18.2 - 3.26i)T \)
good3 \( 1 + (2.69 - 3.38i)T + (-6.00 - 26.3i)T^{2} \)
5 \( 1 + (-4.53 + 5.69i)T + (-27.8 - 121. i)T^{2} \)
11 \( 1 + (-14.6 + 64.2i)T + (-1.19e3 - 577. i)T^{2} \)
13 \( 1 + (-9.14 + 40.0i)T + (-1.97e3 - 953. i)T^{2} \)
17 \( 1 + (-68.4 + 32.9i)T + (3.06e3 - 3.84e3i)T^{2} \)
19 \( 1 - 60.1T + 6.85e3T^{2} \)
23 \( 1 + (-28.7 - 13.8i)T + (7.58e3 + 9.51e3i)T^{2} \)
29 \( 1 + (121. - 58.5i)T + (1.52e4 - 1.90e4i)T^{2} \)
31 \( 1 - 71.4T + 2.97e4T^{2} \)
37 \( 1 + (268. - 129. i)T + (3.15e4 - 3.96e4i)T^{2} \)
41 \( 1 + (213. - 267. i)T + (-1.53e4 - 6.71e4i)T^{2} \)
43 \( 1 + (-160. - 200. i)T + (-1.76e4 + 7.75e4i)T^{2} \)
47 \( 1 + (-125. + 551. i)T + (-9.35e4 - 4.50e4i)T^{2} \)
53 \( 1 + (-386. - 185. i)T + (9.28e4 + 1.16e5i)T^{2} \)
59 \( 1 + (463. + 581. i)T + (-4.57e4 + 2.00e5i)T^{2} \)
61 \( 1 + (-10.3 + 4.96i)T + (1.41e5 - 1.77e5i)T^{2} \)
67 \( 1 + 780.T + 3.00e5T^{2} \)
71 \( 1 + (-485. - 233. i)T + (2.23e5 + 2.79e5i)T^{2} \)
73 \( 1 + (58.8 + 257. i)T + (-3.50e5 + 1.68e5i)T^{2} \)
79 \( 1 + 391.T + 4.93e5T^{2} \)
83 \( 1 + (0.899 + 3.93i)T + (-5.15e5 + 2.48e5i)T^{2} \)
89 \( 1 + (-299. - 1.31e3i)T + (-6.35e5 + 3.05e5i)T^{2} \)
97 \( 1 + 677.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34574988495337923557999534851, −11.87888799276552676446292545019, −11.17212902200475567399473245442, −10.30074062023933034937581932405, −9.065477044056224520854177123119, −7.990715794515615103326361731273, −5.60051158731063021776606462167, −5.11255579227140385309346639377, −3.37709749415850221088008155982, −1.15925006205604051885627217571, 1.64396299322481743754417333507, 4.22726237117390559680253368534, 5.65700397114155799442333124502, 6.90163431154251944412841472001, 7.50805818900615597990502419226, 9.153888161792565479859667251628, 10.34417763996254796186085408315, 11.83907869560031844692399415665, 12.42652105461341077559274508839, 13.85180965752111218667791843437

Graph of the $Z$-function along the critical line