Properties

Label 2-98-1.1-c5-0-8
Degree $2$
Conductor $98$
Sign $1$
Analytic cond. $15.7176$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 29.8·3-s + 16·4-s + 21·5-s − 119.·6-s − 64·8-s + 645.·9-s − 84·10-s + 331.·11-s + 476.·12-s − 66.8·13-s + 625.·15-s + 256·16-s − 240.·17-s − 2.58e3·18-s − 441.·19-s + 336·20-s − 1.32e3·22-s − 1.07e3·23-s − 1.90e3·24-s − 2.68e3·25-s + 267.·26-s + 1.19e4·27-s + 1.79e3·29-s − 2.50e3·30-s + 5.68e3·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.91·3-s + 0.5·4-s + 0.375·5-s − 1.35·6-s − 0.353·8-s + 2.65·9-s − 0.265·10-s + 0.826·11-s + 0.955·12-s − 0.109·13-s + 0.718·15-s + 0.250·16-s − 0.201·17-s − 1.87·18-s − 0.280·19-s + 0.187·20-s − 0.584·22-s − 0.422·23-s − 0.675·24-s − 0.858·25-s + 0.0775·26-s + 3.16·27-s + 0.395·29-s − 0.507·30-s + 1.06·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(15.7176\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.857224195\)
\(L(\frac12)\) \(\approx\) \(2.857224195\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
7 \( 1 \)
good3 \( 1 - 29.8T + 243T^{2} \)
5 \( 1 - 21T + 3.12e3T^{2} \)
11 \( 1 - 331.T + 1.61e5T^{2} \)
13 \( 1 + 66.8T + 3.71e5T^{2} \)
17 \( 1 + 240.T + 1.41e6T^{2} \)
19 \( 1 + 441.T + 2.47e6T^{2} \)
23 \( 1 + 1.07e3T + 6.43e6T^{2} \)
29 \( 1 - 1.79e3T + 2.05e7T^{2} \)
31 \( 1 - 5.68e3T + 2.86e7T^{2} \)
37 \( 1 - 1.12e4T + 6.93e7T^{2} \)
41 \( 1 + 1.20e4T + 1.15e8T^{2} \)
43 \( 1 + 9.92e3T + 1.47e8T^{2} \)
47 \( 1 - 1.68e4T + 2.29e8T^{2} \)
53 \( 1 - 5.29e3T + 4.18e8T^{2} \)
59 \( 1 + 4.13e4T + 7.14e8T^{2} \)
61 \( 1 - 2.15e4T + 8.44e8T^{2} \)
67 \( 1 + 2.66e4T + 1.35e9T^{2} \)
71 \( 1 + 5.80e4T + 1.80e9T^{2} \)
73 \( 1 - 3.99e4T + 2.07e9T^{2} \)
79 \( 1 + 4.39e4T + 3.07e9T^{2} \)
83 \( 1 + 2.24e4T + 3.93e9T^{2} \)
89 \( 1 + 2.40e4T + 5.58e9T^{2} \)
97 \( 1 + 7.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28273545224890244975325750588, −11.95950668698245076315898920684, −10.24786076388569582905627734501, −9.486434220274517153296047473151, −8.637272735487623794522720967327, −7.74720702211958918746642925833, −6.53791483958374596983253057837, −4.12623272533962640301630900794, −2.71593181875707664145104247036, −1.52930606058188947772642361523, 1.52930606058188947772642361523, 2.71593181875707664145104247036, 4.12623272533962640301630900794, 6.53791483958374596983253057837, 7.74720702211958918746642925833, 8.637272735487623794522720967327, 9.486434220274517153296047473151, 10.24786076388569582905627734501, 11.95950668698245076315898920684, 13.28273545224890244975325750588

Graph of the $Z$-function along the critical line