Properties

Label 2-98-1.1-c5-0-0
Degree $2$
Conductor $98$
Sign $1$
Analytic cond. $15.7176$
Root an. cond. $3.96454$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 10·3-s + 16·4-s − 84·5-s + 40·6-s − 64·8-s − 143·9-s + 336·10-s − 336·11-s − 160·12-s − 584·13-s + 840·15-s + 256·16-s + 1.45e3·17-s + 572·18-s − 470·19-s − 1.34e3·20-s + 1.34e3·22-s − 4.20e3·23-s + 640·24-s + 3.93e3·25-s + 2.33e3·26-s + 3.86e3·27-s + 4.86e3·29-s − 3.36e3·30-s + 7.37e3·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.641·3-s + 1/2·4-s − 1.50·5-s + 0.453·6-s − 0.353·8-s − 0.588·9-s + 1.06·10-s − 0.837·11-s − 0.320·12-s − 0.958·13-s + 0.963·15-s + 1/4·16-s + 1.22·17-s + 0.416·18-s − 0.298·19-s − 0.751·20-s + 0.592·22-s − 1.65·23-s + 0.226·24-s + 1.25·25-s + 0.677·26-s + 1.01·27-s + 1.07·29-s − 0.681·30-s + 1.37·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(15.7176\)
Root analytic conductor: \(3.96454\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3616055471\)
\(L(\frac12)\) \(\approx\) \(0.3616055471\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
7 \( 1 \)
good3 \( 1 + 10 T + p^{5} T^{2} \)
5 \( 1 + 84 T + p^{5} T^{2} \)
11 \( 1 + 336 T + p^{5} T^{2} \)
13 \( 1 + 584 T + p^{5} T^{2} \)
17 \( 1 - 1458 T + p^{5} T^{2} \)
19 \( 1 + 470 T + p^{5} T^{2} \)
23 \( 1 + 4200 T + p^{5} T^{2} \)
29 \( 1 - 4866 T + p^{5} T^{2} \)
31 \( 1 - 7372 T + p^{5} T^{2} \)
37 \( 1 - 14330 T + p^{5} T^{2} \)
41 \( 1 + 6222 T + p^{5} T^{2} \)
43 \( 1 - 3704 T + p^{5} T^{2} \)
47 \( 1 - 1812 T + p^{5} T^{2} \)
53 \( 1 + 37242 T + p^{5} T^{2} \)
59 \( 1 + 34302 T + p^{5} T^{2} \)
61 \( 1 + 24476 T + p^{5} T^{2} \)
67 \( 1 + 17452 T + p^{5} T^{2} \)
71 \( 1 - 28224 T + p^{5} T^{2} \)
73 \( 1 + 3602 T + p^{5} T^{2} \)
79 \( 1 - 42872 T + p^{5} T^{2} \)
83 \( 1 - 35202 T + p^{5} T^{2} \)
89 \( 1 + 26730 T + p^{5} T^{2} \)
97 \( 1 - 16978 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.28333482920652058461842308263, −11.94328115537191404128648513591, −10.86863502387414363180937622804, −9.877994411032341752796002500442, −8.148453351104689951083911860489, −7.74913221738114551207573207832, −6.18239302511479670313313305972, −4.67453725403674575218394030923, −2.92288690615189720289646137799, −0.47335253516650937983775240582, 0.47335253516650937983775240582, 2.92288690615189720289646137799, 4.67453725403674575218394030923, 6.18239302511479670313313305972, 7.74913221738114551207573207832, 8.148453351104689951083911860489, 9.877994411032341752796002500442, 10.86863502387414363180937622804, 11.94328115537191404128648513591, 12.28333482920652058461842308263

Graph of the $Z$-function along the critical line