Properties

Label 2-98-1.1-c1-0-0
Degree $2$
Conductor $98$
Sign $1$
Analytic cond. $0.782533$
Root an. cond. $0.884609$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 2·12-s + 4·13-s + 16-s − 6·17-s − 18-s − 2·19-s − 2·24-s − 5·25-s − 4·26-s − 4·27-s − 6·29-s + 4·31-s − 32-s + 6·34-s + 36-s + 2·37-s + 2·38-s + 8·39-s − 6·41-s + 8·43-s + 12·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.577·12-s + 1.10·13-s + 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.458·19-s − 0.408·24-s − 25-s − 0.784·26-s − 0.769·27-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s + 1/6·36-s + 0.328·37-s + 0.324·38-s + 1.28·39-s − 0.937·41-s + 1.21·43-s + 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.782533\)
Root analytic conductor: \(0.884609\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{98} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.001977195\)
\(L(\frac12)\) \(\approx\) \(1.001977195\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87946529878520861319815819980, −13.15728760628296679290378410395, −11.59222775413431567626281153330, −10.57696390398788315518055643332, −9.205467104844532229657218112988, −8.624667079434487291694904422005, −7.55563465371540871894331307120, −6.12986038892916091786195943044, −3.87985229263682105648190826671, −2.25140513775369021989127014661, 2.25140513775369021989127014661, 3.87985229263682105648190826671, 6.12986038892916091786195943044, 7.55563465371540871894331307120, 8.624667079434487291694904422005, 9.205467104844532229657218112988, 10.57696390398788315518055643332, 11.59222775413431567626281153330, 13.15728760628296679290378410395, 13.87946529878520861319815819980

Graph of the $Z$-function along the critical line