Properties

Label 2-975-5.4-c1-0-11
Degree $2$
Conductor $975$
Sign $0.894 - 0.447i$
Analytic cond. $7.78541$
Root an. cond. $2.79023$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + i·3-s + 4-s + 6-s + 3i·7-s − 3i·8-s − 9-s − 11-s + i·12-s + i·13-s + 3·14-s − 16-s + 5i·17-s + i·18-s + 8·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577i·3-s + 0.5·4-s + 0.408·6-s + 1.13i·7-s − 1.06i·8-s − 0.333·9-s − 0.301·11-s + 0.288i·12-s + 0.277i·13-s + 0.801·14-s − 0.250·16-s + 1.21i·17-s + 0.235i·18-s + 1.83·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(7.78541\)
Root analytic conductor: \(2.79023\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{975} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 975,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.79410 + 0.423531i\)
\(L(\frac12)\) \(\approx\) \(1.79410 + 0.423531i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - iT \)
5 \( 1 \)
13 \( 1 - iT \)
good2 \( 1 + iT - 2T^{2} \)
7 \( 1 - 3iT - 7T^{2} \)
11 \( 1 + T + 11T^{2} \)
17 \( 1 - 5iT - 17T^{2} \)
19 \( 1 - 8T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + T + 29T^{2} \)
31 \( 1 - 3T + 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 11iT - 47T^{2} \)
53 \( 1 + 11iT - 53T^{2} \)
59 \( 1 + 5T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 3iT - 67T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 3iT - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.953219325022572253019619379447, −9.610572909105518852360956890047, −8.548589806551599059976766094615, −7.69713105689630168693199699420, −6.48066467962313670565829759637, −5.74135727289181725149398634475, −4.72309955422586542185131622997, −3.44831572882204286425184494551, −2.74840290685116707800225510351, −1.53357364983604927373442074658, 0.902528051191669292261780888325, 2.42895203304094878911833113373, 3.52997842255030820555157743329, 5.02701032876611107425291241719, 5.70509225015289243159030107494, 6.88062157319066545505867244925, 7.34426558003431121544280184614, 7.81579865387732758228568223813, 8.931870849238938903462290077281, 9.993365486017427421181187407919

Graph of the $Z$-function along the critical line