L(s) = 1 | − 2.48i·2-s + i·3-s − 4.19·4-s + 2.48·6-s − 1.19i·7-s + 5.46i·8-s − 9-s − 1.19·11-s − 4.19i·12-s − i·13-s − 2.97·14-s + 5.21·16-s + 6.17i·17-s + 2.48i·18-s − 6.97·19-s + ⋯ |
L(s) = 1 | − 1.76i·2-s + 0.577i·3-s − 2.09·4-s + 1.01·6-s − 0.452i·7-s + 1.93i·8-s − 0.333·9-s − 0.360·11-s − 1.21i·12-s − 0.277i·13-s − 0.796·14-s + 1.30·16-s + 1.49i·17-s + 0.586i·18-s − 1.60·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.111731 + 0.0690539i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.111731 + 0.0690539i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 2 | \( 1 + 2.48iT - 2T^{2} \) |
| 7 | \( 1 + 1.19iT - 7T^{2} \) |
| 11 | \( 1 + 1.19T + 11T^{2} \) |
| 17 | \( 1 - 6.17iT - 17T^{2} \) |
| 19 | \( 1 + 6.97T + 19T^{2} \) |
| 23 | \( 1 + 4.17iT - 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + 2.97T + 31T^{2} \) |
| 37 | \( 1 - 7.78iT - 37T^{2} \) |
| 41 | \( 1 + 6.17T + 41T^{2} \) |
| 43 | \( 1 - 9.95iT - 43T^{2} \) |
| 47 | \( 1 + 1.02iT - 47T^{2} \) |
| 53 | \( 1 + 10.1iT - 53T^{2} \) |
| 59 | \( 1 + 5.37T + 59T^{2} \) |
| 61 | \( 1 - 12.5T + 61T^{2} \) |
| 67 | \( 1 - 9.37iT - 67T^{2} \) |
| 71 | \( 1 + 5.19T + 71T^{2} \) |
| 73 | \( 1 - 11.9iT - 73T^{2} \) |
| 79 | \( 1 - 1.78T + 79T^{2} \) |
| 83 | \( 1 - 5.37iT - 83T^{2} \) |
| 89 | \( 1 + 10.1T + 89T^{2} \) |
| 97 | \( 1 + 1.82iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23747172699111496466814559363, −9.841532883010060604669376265918, −8.616077350901613521496146708988, −8.269399661457781007960468908097, −6.65739091274957298006745735864, −5.44908867718064415994054435779, −4.33745900979908265966801562894, −3.85096843753709715796561504672, −2.74589052912346347466346002477, −1.64750551038587228950260744757,
0.05889724693817678428696016877, 2.24072169709271762784196079828, 3.88456014434641877908589326214, 5.08393976262261890803366787068, 5.67680850964086649547778111379, 6.57565638892244278597245708981, 7.31948693479767534053386853108, 7.85004914491059140278042041109, 9.028551265913521836087276876695, 9.122731980486811315230740012853