L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s − 13-s + (−0.499 + 0.866i)16-s + (0.5 + 0.866i)19-s − 0.999·21-s − 0.999·27-s + (−0.499 + 0.866i)28-s + 2·31-s + (−0.499 + 0.866i)36-s + (1 − 1.73i)37-s + (−0.5 + 0.866i)39-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 0.999·12-s − 13-s + (−0.499 + 0.866i)16-s + (0.5 + 0.866i)19-s − 0.999·21-s − 0.999·27-s + (−0.499 + 0.866i)28-s + 2·31-s + (−0.499 + 0.866i)36-s + (1 − 1.73i)37-s + (−0.5 + 0.866i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8829375268\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8829375268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.852246864281772762571094234387, −9.184768914145084891096575728697, −8.143038880934048142478579951979, −7.37145874042251345594491716672, −6.54631896126174916189396117275, −5.73813529112427156566665246733, −4.57442467153360372299369917498, −3.51420551010126304392432655651, −2.19207251486768035259803088450, −0.813275479504411650719544841679,
2.70408263627851848195748200723, 3.04054851144198347176414363508, 4.46368752189094048442954809538, 4.92930580491230472922330850948, 6.20060069090052131309275776188, 7.41785223496469855228093816686, 8.223345515667233378018295425003, 8.926594045490684485566430927972, 9.610824892434926778972806506377, 10.14481120059794087714542727938