L(s) = 1 | + (−0.258 − 0.965i)3-s + (−0.5 − 0.866i)4-s + (1.67 − 0.965i)7-s + (−0.866 + 0.499i)9-s + (−0.707 + 0.707i)12-s + (0.707 − 0.707i)13-s + (−0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (−1.36 − 1.36i)21-s + (0.707 + 0.707i)27-s + (−1.67 − 0.965i)28-s + (−1 + i)31-s + (0.866 + 0.5i)36-s + (−1.22 − 0.707i)37-s + (−0.866 − 0.500i)39-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)3-s + (−0.5 − 0.866i)4-s + (1.67 − 0.965i)7-s + (−0.866 + 0.499i)9-s + (−0.707 + 0.707i)12-s + (0.707 − 0.707i)13-s + (−0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (−1.36 − 1.36i)21-s + (0.707 + 0.707i)27-s + (−1.67 − 0.965i)28-s + (−1 + i)31-s + (0.866 + 0.5i)36-s + (−1.22 − 0.707i)37-s + (−0.866 − 0.500i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9496170772\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9496170772\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.258 + 0.965i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.707 + 0.707i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.133 - 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (1 - i)T - iT^{2} \) |
| 37 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.258 + 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 - 0.517T + T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24629499248698166755794004083, −8.863197411199286017042520815699, −8.209887458618786097117935413732, −7.49969104059670907437500920583, −6.54679839692868576526397170910, −5.49274259663099978583306122785, −4.96272480173890854125346326873, −3.76635340517181345846540417150, −1.86390255600461271548844928621, −1.08166705411141212548518626572,
2.10059194820829656696200078256, 3.45128989055165716164754111912, 4.42137284416584587507306714259, 5.02518205011038637528395133447, 5.91016989799203008826724077643, 7.28038594460905759569777442576, 8.372463039698783708113353584018, 8.731228507463052723745123665049, 9.390298032171206689928982463980, 10.59584132741676083357994678129