# Properties

 Label 2-975-195.179-c0-0-1 Degree $2$ Conductor $975$ Sign $0.998 - 0.0471i$ Analytic cond. $0.486588$ Root an. cond. $0.697558$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 1.5i)7-s + (0.499 − 0.866i)9-s − 0.999i·12-s − i·13-s + (−0.499 − 0.866i)16-s + (1.5 + 0.866i)19-s + 1.73i·21-s + 0.999i·27-s + (0.866 + 1.5i)28-s + (0.499 + 0.866i)36-s + (0.5 + 0.866i)39-s + (0.866 + 0.5i)43-s + (0.866 + 0.499i)48-s + (−1 − 1.73i)49-s + ⋯
 L(s)  = 1 + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 1.5i)7-s + (0.499 − 0.866i)9-s − 0.999i·12-s − i·13-s + (−0.499 − 0.866i)16-s + (1.5 + 0.866i)19-s + 1.73i·21-s + 0.999i·27-s + (0.866 + 1.5i)28-s + (0.499 + 0.866i)36-s + (0.5 + 0.866i)39-s + (0.866 + 0.5i)43-s + (0.866 + 0.499i)48-s + (−1 − 1.73i)49-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0471i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0471i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$975$$    =    $$3 \cdot 5^{2} \cdot 13$$ Sign: $0.998 - 0.0471i$ Analytic conductor: $$0.486588$$ Root analytic conductor: $$0.697558$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{975} (374, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 975,\ (\ :0),\ 0.998 - 0.0471i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.7627733425$$ $$L(\frac12)$$ $$\approx$$ $$0.7627733425$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 + (0.866 - 0.5i)T$$
5 $$1$$
13 $$1 + iT$$
good2 $$1 + (0.5 - 0.866i)T^{2}$$
7 $$1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2}$$
11 $$1 + (-0.5 + 0.866i)T^{2}$$
17 $$1 + (-0.5 - 0.866i)T^{2}$$
19 $$1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2}$$
23 $$1 + (-0.5 + 0.866i)T^{2}$$
29 $$1 + (0.5 - 0.866i)T^{2}$$
31 $$1 - T^{2}$$
37 $$1 + (-0.5 + 0.866i)T^{2}$$
41 $$1 + (-0.5 + 0.866i)T^{2}$$
43 $$1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2}$$
47 $$1 - T^{2}$$
53 $$1 + T^{2}$$
59 $$1 + (-0.5 - 0.866i)T^{2}$$
61 $$1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2}$$
67 $$1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2}$$
71 $$1 + (-0.5 - 0.866i)T^{2}$$
73 $$1 + 1.73T + T^{2}$$
79 $$1 + T + T^{2}$$
83 $$1 - T^{2}$$
89 $$1 + (-0.5 + 0.866i)T^{2}$$
97 $$1 + (-0.5 - 0.866i)T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.18863945354725809606002214696, −9.665138723163920567651939078481, −8.400953683789989162753654423497, −7.63440485442352029590414145920, −7.08196140541923604655411812722, −5.67753303725468628286875505596, −4.85934612011265895961897678510, −4.05243665191458890328968573765, −3.30059615882169244256446176012, −1.01539805814403334687306830811, 1.36425995494544265348673443810, 2.40305759366606209771398654208, 4.41998840821261166179728953322, 5.22582508219415018527254727361, 5.68469944884734289482176611724, 6.62844051042552492416580593578, 7.61408668676333485297886221491, 8.751071500989826797010093530113, 9.275470016418029133599979823455, 10.24098459200135677618807953666