L(s) = 1 | + (0.258 − 0.965i)3-s + (0.5 − 0.866i)4-s + (−0.258 + 0.448i)7-s + (−0.866 − 0.499i)9-s + (−0.707 − 0.707i)12-s + (−0.707 − 0.707i)13-s + (−0.499 − 0.866i)16-s + (1.86 − 0.5i)19-s + (0.366 + 0.366i)21-s + (−0.707 + 0.707i)27-s + (0.258 + 0.448i)28-s + (−1 + i)31-s + (−0.866 + 0.5i)36-s + (0.707 + 1.22i)37-s + (−0.866 + 0.500i)39-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)3-s + (0.5 − 0.866i)4-s + (−0.258 + 0.448i)7-s + (−0.866 − 0.499i)9-s + (−0.707 − 0.707i)12-s + (−0.707 − 0.707i)13-s + (−0.499 − 0.866i)16-s + (1.86 − 0.5i)19-s + (0.366 + 0.366i)21-s + (−0.707 + 0.707i)27-s + (0.258 + 0.448i)28-s + (−1 + i)31-s + (−0.866 + 0.5i)36-s + (0.707 + 1.22i)37-s + (−0.866 + 0.500i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.132268771\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.132268771\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (-1.86 + 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (1 - i)T - iT^{2} \) |
| 37 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 - 1.93iT - T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.824988888341178959864228019777, −9.285992316778043043908893602680, −8.192059285793527442836484143342, −7.27739480508224049421714302544, −6.73783525158588567517770063832, −5.64085023106563193840723572574, −5.16644815281216447131674865481, −3.21751600650039139480953801431, −2.42070901522517574952781215323, −1.11764943012564138788271240417,
2.25007561007341081224053506907, 3.34886063199728801307439432188, 4.00541901666332915746601791377, 5.06407548403679158825530665443, 6.16052231433560935275064977749, 7.39834305516403778198639243437, 7.74355284750463550902928893210, 8.964640445013579206085040621686, 9.565244410723031016431237163488, 10.34013256862564174739954578426