L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)4-s + (1.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s + (−3 + 1.73i)11-s + 1.99·12-s + (−3.5 − 0.866i)13-s + (−1.99 − 3.46i)16-s + (3 + 1.73i)19-s − 1.73i·21-s + (−3 − 5.19i)23-s + 0.999·27-s + (−3 + 1.73i)28-s + (−3 − 5.19i)29-s − 1.73i·31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.5 + 0.866i)4-s + (0.566 + 0.327i)7-s + (−0.166 + 0.288i)9-s + (−0.904 + 0.522i)11-s + 0.577·12-s + (−0.970 − 0.240i)13-s + (−0.499 − 0.866i)16-s + (0.688 + 0.397i)19-s − 0.377i·21-s + (−0.625 − 1.08i)23-s + 0.192·27-s + (−0.566 + 0.327i)28-s + (−0.557 − 0.964i)29-s − 0.311i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 2 | \( 1 + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-1.5 - 0.866i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 - 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.73iT - 31T^{2} \) |
| 37 | \( 1 + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (6 - 3.46i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (3 + 1.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.5 - 4.33i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (9 + 5.19i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 11T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.5 - 2.59i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.651715615506368687536095045272, −8.584250861254240999058392445136, −7.75599880232631505058479938482, −7.50064747390494244364191570336, −6.18808933732839416372932720253, −5.08615404826134296847720932980, −4.49952413052877564035388332568, −3.04759202969689392374417843759, −2.06555189694570825403784157666, 0,
1.62653516659400084362747731031, 3.21632049637395201077392991657, 4.48956763572689170067062061150, 5.17307383378504087078451922997, 5.75750726649752517900508221771, 7.02286014279295953272144916573, 7.911030600551024386461923548373, 8.939055122074977073629508138444, 9.670613633660325487730464257980