Properties

Label 2-975-1.1-c1-0-4
Degree $2$
Conductor $975$
Sign $1$
Analytic cond. $7.78541$
Root an. cond. $2.79023$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.22·2-s + 3-s − 0.504·4-s − 1.22·6-s − 4.18·7-s + 3.06·8-s + 9-s + 1.89·11-s − 0.504·12-s + 13-s + 5.11·14-s − 2.73·16-s + 1.73·17-s − 1.22·18-s − 1.11·19-s − 4.18·21-s − 2.32·22-s − 9.30·23-s + 3.06·24-s − 1.22·26-s + 27-s + 2.10·28-s + 5.00·29-s + 10.0·31-s − 2.77·32-s + 1.89·33-s − 2.12·34-s + ⋯
L(s)  = 1  − 0.864·2-s + 0.577·3-s − 0.252·4-s − 0.499·6-s − 1.58·7-s + 1.08·8-s + 0.333·9-s + 0.572·11-s − 0.145·12-s + 0.277·13-s + 1.36·14-s − 0.684·16-s + 0.421·17-s − 0.288·18-s − 0.256·19-s − 0.912·21-s − 0.494·22-s − 1.93·23-s + 0.625·24-s − 0.239·26-s + 0.192·27-s + 0.398·28-s + 0.929·29-s + 1.79·31-s − 0.490·32-s + 0.330·33-s − 0.364·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(7.78541\)
Root analytic conductor: \(2.79023\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9053876492\)
\(L(\frac12)\) \(\approx\) \(0.9053876492\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + 1.22T + 2T^{2} \)
7 \( 1 + 4.18T + 7T^{2} \)
11 \( 1 - 1.89T + 11T^{2} \)
17 \( 1 - 1.73T + 17T^{2} \)
19 \( 1 + 1.11T + 19T^{2} \)
23 \( 1 + 9.30T + 23T^{2} \)
29 \( 1 - 5.00T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 - 11.3T + 37T^{2} \)
41 \( 1 - 8.02T + 41T^{2} \)
43 \( 1 + 1.00T + 43T^{2} \)
47 \( 1 + 5.63T + 47T^{2} \)
53 \( 1 + 0.174T + 53T^{2} \)
59 \( 1 - 8.64T + 59T^{2} \)
61 \( 1 - 3.27T + 61T^{2} \)
67 \( 1 - 11.4T + 67T^{2} \)
71 \( 1 + 5.37T + 71T^{2} \)
73 \( 1 - 4.01T + 73T^{2} \)
79 \( 1 + 0.613T + 79T^{2} \)
83 \( 1 - 9.08T + 83T^{2} \)
89 \( 1 + 1.46T + 89T^{2} \)
97 \( 1 + 3.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.895740764290774676049477075112, −9.314530078876690004747190832346, −8.390219619968241330880554174361, −7.83543593268310044132664552944, −6.67092998369066442547178210079, −6.04545158522943968752056109090, −4.42938328148670721798420068027, −3.67254740168040415728118428476, −2.46732342000288605243950479866, −0.834274516069525070950512985959, 0.834274516069525070950512985959, 2.46732342000288605243950479866, 3.67254740168040415728118428476, 4.42938328148670721798420068027, 6.04545158522943968752056109090, 6.67092998369066442547178210079, 7.83543593268310044132664552944, 8.390219619968241330880554174361, 9.314530078876690004747190832346, 9.895740764290774676049477075112

Graph of the $Z$-function along the critical line