Properties

Label 2-975-1.1-c1-0-21
Degree $2$
Conductor $975$
Sign $-1$
Analytic cond. $7.78541$
Root an. cond. $2.79023$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·6-s + 3·7-s + 9-s − 5·11-s − 2·12-s − 13-s − 6·14-s − 4·16-s − 5·17-s − 2·18-s + 2·19-s − 3·21-s + 10·22-s + 23-s + 2·26-s − 27-s + 6·28-s + 10·29-s − 2·31-s + 8·32-s + 5·33-s + 10·34-s + 2·36-s + 3·37-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s + 1.13·7-s + 1/3·9-s − 1.50·11-s − 0.577·12-s − 0.277·13-s − 1.60·14-s − 16-s − 1.21·17-s − 0.471·18-s + 0.458·19-s − 0.654·21-s + 2.13·22-s + 0.208·23-s + 0.392·26-s − 0.192·27-s + 1.13·28-s + 1.85·29-s − 0.359·31-s + 1.41·32-s + 0.870·33-s + 1.71·34-s + 1/3·36-s + 0.493·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(7.78541\)
Root analytic conductor: \(2.79023\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.701695706512646903485719857934, −8.601901886211211189403446744067, −8.084242246987417548623306093779, −7.36153153818067797309191660906, −6.45249708944222678026047767274, −5.06916684681045607590528795326, −4.63606321997536781672386123440, −2.62937015502897623552127991869, −1.48325443600957610417560300046, 0, 1.48325443600957610417560300046, 2.62937015502897623552127991869, 4.63606321997536781672386123440, 5.06916684681045607590528795326, 6.45249708944222678026047767274, 7.36153153818067797309191660906, 8.084242246987417548623306093779, 8.601901886211211189403446744067, 9.701695706512646903485719857934

Graph of the $Z$-function along the critical line