L(s) = 1 | − 5-s − 11-s − 5·13-s − 2·19-s + 3·23-s + 25-s − 3·29-s − 8·31-s + 8·37-s + 3·41-s + 5·43-s + 3·47-s + 9·53-s + 55-s − 2·61-s + 5·65-s + 14·67-s − 12·71-s + 10·73-s + 8·79-s + 6·83-s + 2·95-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.301·11-s − 1.38·13-s − 0.458·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s − 1.43·31-s + 1.31·37-s + 0.468·41-s + 0.762·43-s + 0.437·47-s + 1.23·53-s + 0.134·55-s − 0.256·61-s + 0.620·65-s + 1.71·67-s − 1.42·71-s + 1.17·73-s + 0.900·79-s + 0.658·83-s + 0.205·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97020 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97020 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.188887477\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.188887477\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 - 3 T + p T^{2} \) |
| 43 | \( 1 - 5 T + p T^{2} \) |
| 47 | \( 1 - 3 T + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 14 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.81744555835850, −13.11180549082658, −12.83044553183120, −12.35704180960572, −11.88526557306695, −11.29243337711090, −10.83495870740154, −10.47657181549774, −9.699932931967260, −9.366790512224141, −8.898227438273448, −8.194639484710956, −7.641772613352102, −7.369422063261582, −6.803826723476872, −6.178721735280787, −5.381422354758906, −5.191635974075055, −4.360034943654602, −3.985406380889820, −3.277044877032449, −2.450472274273692, −2.255350633551797, −1.163168309495138, −0.3654099675146742,
0.3654099675146742, 1.163168309495138, 2.255350633551797, 2.450472274273692, 3.277044877032449, 3.985406380889820, 4.360034943654602, 5.191635974075055, 5.381422354758906, 6.178721735280787, 6.803826723476872, 7.369422063261582, 7.641772613352102, 8.194639484710956, 8.898227438273448, 9.366790512224141, 9.699932931967260, 10.47657181549774, 10.83495870740154, 11.29243337711090, 11.88526557306695, 12.35704180960572, 12.83044553183120, 13.11180549082658, 13.81744555835850