Properties

Label 2-9702-1.1-c1-0-58
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.23·5-s − 8-s − 3.23·10-s + 11-s + 16-s + 0.763·17-s + 5.70·19-s + 3.23·20-s − 22-s − 6.47·23-s + 5.47·25-s + 4.47·29-s − 7.23·31-s − 32-s − 0.763·34-s + 6.94·37-s − 5.70·38-s − 3.23·40-s + 0.763·41-s − 2.47·43-s + 44-s + 6.47·46-s + 9.70·47-s − 5.47·50-s + 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.44·5-s − 0.353·8-s − 1.02·10-s + 0.301·11-s + 0.250·16-s + 0.185·17-s + 1.30·19-s + 0.723·20-s − 0.213·22-s − 1.34·23-s + 1.09·25-s + 0.830·29-s − 1.29·31-s − 0.176·32-s − 0.131·34-s + 1.14·37-s − 0.925·38-s − 0.511·40-s + 0.119·41-s − 0.376·43-s + 0.150·44-s + 0.954·46-s + 1.41·47-s − 0.773·50-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.208161470\)
\(L(\frac12)\) \(\approx\) \(2.208161470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 3.23T + 5T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 0.763T + 17T^{2} \)
19 \( 1 - 5.70T + 19T^{2} \)
23 \( 1 + 6.47T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 7.23T + 31T^{2} \)
37 \( 1 - 6.94T + 37T^{2} \)
41 \( 1 - 0.763T + 41T^{2} \)
43 \( 1 + 2.47T + 43T^{2} \)
47 \( 1 - 9.70T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 10.4T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 11.4T + 67T^{2} \)
71 \( 1 + 6.47T + 71T^{2} \)
73 \( 1 + 2.29T + 73T^{2} \)
79 \( 1 + 15.4T + 79T^{2} \)
83 \( 1 - 3.23T + 83T^{2} \)
89 \( 1 + 2.47T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51094990459684057901788150817, −7.21406646171574540605324781367, −6.07815469823933489417662159348, −5.94958910523081207352979633510, −5.17214062048125914071591313762, −4.16682813317038650899691498016, −3.18832118192243403912499352078, −2.36041988340953305810774911917, −1.68590016565790179826447577587, −0.816454758009094986539579143561, 0.816454758009094986539579143561, 1.68590016565790179826447577587, 2.36041988340953305810774911917, 3.18832118192243403912499352078, 4.16682813317038650899691498016, 5.17214062048125914071591313762, 5.94958910523081207352979633510, 6.07815469823933489417662159348, 7.21406646171574540605324781367, 7.51094990459684057901788150817

Graph of the $Z$-function along the critical line