Properties

Label 2-9702-1.1-c1-0-17
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.23·5-s − 8-s + 1.23·10-s + 11-s + 16-s + 5.23·17-s − 7.70·19-s − 1.23·20-s − 22-s + 2.47·23-s − 3.47·25-s − 4.47·29-s − 2.76·31-s − 32-s − 5.23·34-s − 10.9·37-s + 7.70·38-s + 1.23·40-s + 5.23·41-s + 6.47·43-s + 44-s − 2.47·46-s − 3.70·47-s + 3.47·50-s + 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.552·5-s − 0.353·8-s + 0.390·10-s + 0.301·11-s + 0.250·16-s + 1.26·17-s − 1.76·19-s − 0.276·20-s − 0.213·22-s + 0.515·23-s − 0.694·25-s − 0.830·29-s − 0.496·31-s − 0.176·32-s − 0.897·34-s − 1.79·37-s + 1.25·38-s + 0.195·40-s + 0.817·41-s + 0.986·43-s + 0.150·44-s − 0.364·46-s − 0.540·47-s + 0.491·50-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9651123954\)
\(L(\frac12)\) \(\approx\) \(0.9651123954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 1.23T + 5T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 5.23T + 17T^{2} \)
19 \( 1 + 7.70T + 19T^{2} \)
23 \( 1 - 2.47T + 23T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 2.76T + 31T^{2} \)
37 \( 1 + 10.9T + 37T^{2} \)
41 \( 1 - 5.23T + 41T^{2} \)
43 \( 1 - 6.47T + 43T^{2} \)
47 \( 1 + 3.70T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 1.52T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 15.4T + 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 + 15.7T + 73T^{2} \)
79 \( 1 - 11.4T + 79T^{2} \)
83 \( 1 + 1.23T + 83T^{2} \)
89 \( 1 - 6.47T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64122486045090032868752395331, −7.23467212132357021349930817359, −6.42112028250965729792088149889, −5.76848086573341408127054009480, −4.98932281762874369630064853677, −3.93731539192904950324502765614, −3.54576248318191699989054317023, −2.42480316453306053751545513846, −1.64100581346273029575897509281, −0.52139969252379929261967267725, 0.52139969252379929261967267725, 1.64100581346273029575897509281, 2.42480316453306053751545513846, 3.54576248318191699989054317023, 3.93731539192904950324502765614, 4.98932281762874369630064853677, 5.76848086573341408127054009480, 6.42112028250965729792088149889, 7.23467212132357021349930817359, 7.64122486045090032868752395331

Graph of the $Z$-function along the critical line