Properties

Label 2-9702-1.1-c1-0-157
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4.24·5-s − 8-s − 4.24·10-s + 11-s + 16-s − 5.65·17-s + 4.24·20-s − 22-s − 6·23-s + 12.9·25-s − 2·29-s + 1.41·31-s − 32-s + 5.65·34-s − 10·37-s − 4.24·40-s − 11.3·41-s − 8·43-s + 44-s + 6·46-s + 4.24·47-s − 12.9·50-s − 8·53-s + 4.24·55-s + 2·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.89·5-s − 0.353·8-s − 1.34·10-s + 0.301·11-s + 0.250·16-s − 1.37·17-s + 0.948·20-s − 0.213·22-s − 1.25·23-s + 2.59·25-s − 0.371·29-s + 0.254·31-s − 0.176·32-s + 0.970·34-s − 1.64·37-s − 0.670·40-s − 1.76·41-s − 1.21·43-s + 0.150·44-s + 0.884·46-s + 0.618·47-s − 1.83·50-s − 1.09·53-s + 0.572·55-s + 0.262·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 4.24T + 5T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 1.41T + 31T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + 11.3T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 - 4.24T + 47T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 - 1.41T + 59T^{2} \)
61 \( 1 - 2.82T + 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 + 8.48T + 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 + 16.9T + 83T^{2} \)
89 \( 1 + 7.07T + 89T^{2} \)
97 \( 1 - 9.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.12053203459857555400599003846, −6.65268893283410813193648402452, −6.15645615616629206463948287474, −5.42537264291110908041274093369, −4.78659205850803489284580643843, −3.67163113774065709370095481464, −2.67502100629998347364673387373, −1.91594254415635647566685483353, −1.52028266885408704269461303539, 0, 1.52028266885408704269461303539, 1.91594254415635647566685483353, 2.67502100629998347364673387373, 3.67163113774065709370095481464, 4.78659205850803489284580643843, 5.42537264291110908041274093369, 6.15645615616629206463948287474, 6.65268893283410813193648402452, 7.12053203459857555400599003846

Graph of the $Z$-function along the critical line