Properties

Label 2-9702-1.1-c1-0-152
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 11-s + 1.41·13-s + 16-s − 4·17-s + 5.41·19-s − 22-s − 7.65·23-s − 5·25-s + 1.41·26-s + 5.65·29-s − 3.07·31-s + 32-s − 4·34-s + 3.65·37-s + 5.41·38-s − 9.65·41-s − 10·43-s − 44-s − 7.65·46-s + 1.41·47-s − 5·50-s + 1.41·52-s + 3.65·53-s + 5.65·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.353·8-s − 0.301·11-s + 0.392·13-s + 0.250·16-s − 0.970·17-s + 1.24·19-s − 0.213·22-s − 1.59·23-s − 25-s + 0.277·26-s + 1.05·29-s − 0.551·31-s + 0.176·32-s − 0.685·34-s + 0.601·37-s + 0.878·38-s − 1.50·41-s − 1.52·43-s − 0.150·44-s − 1.12·46-s + 0.206·47-s − 0.707·50-s + 0.196·52-s + 0.502·53-s + 0.742·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 5T^{2} \)
13 \( 1 - 1.41T + 13T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 - 5.41T + 19T^{2} \)
23 \( 1 + 7.65T + 23T^{2} \)
29 \( 1 - 5.65T + 29T^{2} \)
31 \( 1 + 3.07T + 31T^{2} \)
37 \( 1 - 3.65T + 37T^{2} \)
41 \( 1 + 9.65T + 41T^{2} \)
43 \( 1 + 10T + 43T^{2} \)
47 \( 1 - 1.41T + 47T^{2} \)
53 \( 1 - 3.65T + 53T^{2} \)
59 \( 1 + 6.82T + 59T^{2} \)
61 \( 1 + 1.41T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 13.6T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 - 1.65T + 79T^{2} \)
83 \( 1 - 15.0T + 83T^{2} \)
89 \( 1 + 2.58T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.31821021334566361084735667859, −6.44713373955690254987157833210, −6.02133623511271840062019651302, −5.21806493573890461280459696776, −4.59075600414365518391393782159, −3.81224155942979933118912245834, −3.16970989580926244640150791255, −2.24564842612789629388186244474, −1.46740652730559253332895514935, 0, 1.46740652730559253332895514935, 2.24564842612789629388186244474, 3.16970989580926244640150791255, 3.81224155942979933118912245834, 4.59075600414365518391393782159, 5.21806493573890461280459696776, 6.02133623511271840062019651302, 6.44713373955690254987157833210, 7.31821021334566361084735667859

Graph of the $Z$-function along the critical line