L(s) = 1 | + 2-s + 4-s − 1.41·5-s + 8-s − 1.41·10-s + 11-s − 1.41·13-s + 16-s + 1.41·17-s + 2.82·19-s − 1.41·20-s + 22-s − 4·23-s − 2.99·25-s − 1.41·26-s − 6·29-s + 2.82·31-s + 32-s + 1.41·34-s − 8·37-s + 2.82·38-s − 1.41·40-s + 7.07·41-s − 8·43-s + 44-s − 4·46-s + 8.48·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.632·5-s + 0.353·8-s − 0.447·10-s + 0.301·11-s − 0.392·13-s + 0.250·16-s + 0.342·17-s + 0.648·19-s − 0.316·20-s + 0.213·22-s − 0.834·23-s − 0.599·25-s − 0.277·26-s − 1.11·29-s + 0.508·31-s + 0.176·32-s + 0.242·34-s − 1.31·37-s + 0.458·38-s − 0.223·40-s + 1.10·41-s − 1.21·43-s + 0.150·44-s − 0.589·46-s + 1.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + 1.41T + 5T^{2} \) |
| 13 | \( 1 + 1.41T + 13T^{2} \) |
| 17 | \( 1 - 1.41T + 17T^{2} \) |
| 19 | \( 1 - 2.82T + 19T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 2.82T + 31T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 - 7.07T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 - 8.48T + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 7.07T + 61T^{2} \) |
| 67 | \( 1 + 8T + 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + 1.41T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 2.82T + 83T^{2} \) |
| 89 | \( 1 + 9.89T + 89T^{2} \) |
| 97 | \( 1 + 15.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.32473626253325216386573207573, −6.68892702580297610804645332557, −5.77536415636543509426383610308, −5.36923663389036531189594286452, −4.40729540099479425105988438856, −3.88447990559653417784001258306, −3.22075544445163111007606497831, −2.30560060491952324788022815643, −1.36271820470871749792875197880, 0,
1.36271820470871749792875197880, 2.30560060491952324788022815643, 3.22075544445163111007606497831, 3.88447990559653417784001258306, 4.40729540099479425105988438856, 5.36923663389036531189594286452, 5.77536415636543509426383610308, 6.68892702580297610804645332557, 7.32473626253325216386573207573