Properties

Label 2-9702-1.1-c1-0-137
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 11-s + 2·13-s + 16-s + 17-s − 3·19-s − 2·20-s + 22-s − 23-s − 25-s + 2·26-s − 29-s − 2·31-s + 32-s + 34-s − 5·37-s − 3·38-s − 2·40-s − 10·41-s + 43-s + 44-s − 46-s + 7·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 0.301·11-s + 0.554·13-s + 1/4·16-s + 0.242·17-s − 0.688·19-s − 0.447·20-s + 0.213·22-s − 0.208·23-s − 1/5·25-s + 0.392·26-s − 0.185·29-s − 0.359·31-s + 0.176·32-s + 0.171·34-s − 0.821·37-s − 0.486·38-s − 0.316·40-s − 1.56·41-s + 0.152·43-s + 0.150·44-s − 0.147·46-s + 1.02·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 + 3 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 5 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.21595367049508057928776066431, −6.68780969747792011510707628397, −5.89548555527395535576149496329, −5.28027431718388085753161750342, −4.37640965511282924337532699376, −3.85882314640948234867650800558, −3.30893944263956688405362735139, −2.28631767824390458349990151964, −1.33984965538686538449952330658, 0, 1.33984965538686538449952330658, 2.28631767824390458349990151964, 3.30893944263956688405362735139, 3.85882314640948234867650800558, 4.37640965511282924337532699376, 5.28027431718388085753161750342, 5.89548555527395535576149496329, 6.68780969747792011510707628397, 7.21595367049508057928776066431

Graph of the $Z$-function along the critical line