Properties

Label 2-9702-1.1-c1-0-136
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.23·5-s − 8-s − 3.23·10-s − 11-s − 1.23·13-s + 16-s − 6.47·17-s + 2.76·19-s + 3.23·20-s + 22-s − 4·23-s + 5.47·25-s + 1.23·26-s + 4.47·29-s − 2·31-s − 32-s + 6.47·34-s − 10.9·37-s − 2.76·38-s − 3.23·40-s + 6.47·41-s − 1.52·43-s − 44-s + 4·46-s − 2·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.44·5-s − 0.353·8-s − 1.02·10-s − 0.301·11-s − 0.342·13-s + 0.250·16-s − 1.56·17-s + 0.634·19-s + 0.723·20-s + 0.213·22-s − 0.834·23-s + 1.09·25-s + 0.242·26-s + 0.830·29-s − 0.359·31-s − 0.176·32-s + 1.10·34-s − 1.79·37-s − 0.448·38-s − 0.511·40-s + 1.01·41-s − 0.232·43-s − 0.150·44-s + 0.589·46-s − 0.291·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 3.23T + 5T^{2} \)
13 \( 1 + 1.23T + 13T^{2} \)
17 \( 1 + 6.47T + 17T^{2} \)
19 \( 1 - 2.76T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 10.9T + 37T^{2} \)
41 \( 1 - 6.47T + 41T^{2} \)
43 \( 1 + 1.52T + 43T^{2} \)
47 \( 1 + 2T + 47T^{2} \)
53 \( 1 - 0.472T + 53T^{2} \)
59 \( 1 - 7.23T + 59T^{2} \)
61 \( 1 - 5.23T + 61T^{2} \)
67 \( 1 + 15.4T + 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 - 4.94T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 3.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.27106900226214349429361205246, −6.67163897016025209483958688862, −6.11576293597130253520701997911, −5.39039573573711553871805384457, −4.77443602414202535048391254339, −3.69928742332344896828782178825, −2.58674712908158369260407786845, −2.16452390180340136583866657341, −1.32155024583528464959673079686, 0, 1.32155024583528464959673079686, 2.16452390180340136583866657341, 2.58674712908158369260407786845, 3.69928742332344896828782178825, 4.77443602414202535048391254339, 5.39039573573711553871805384457, 6.11576293597130253520701997911, 6.67163897016025209483958688862, 7.27106900226214349429361205246

Graph of the $Z$-function along the critical line