Properties

Label 2-9702-1.1-c1-0-123
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2.64·5-s + 8-s − 2.64·10-s − 11-s − 4·13-s + 16-s + 3·17-s + 5.29·19-s − 2.64·20-s − 22-s + 2.64·23-s + 2.00·25-s − 4·26-s − 2·29-s − 4·31-s + 32-s + 3·34-s + 1.29·37-s + 5.29·38-s − 2.64·40-s − 9·41-s + 9.29·43-s − 44-s + 2.64·46-s + 3.93·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.18·5-s + 0.353·8-s − 0.836·10-s − 0.301·11-s − 1.10·13-s + 0.250·16-s + 0.727·17-s + 1.21·19-s − 0.591·20-s − 0.213·22-s + 0.551·23-s + 0.400·25-s − 0.784·26-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s + 0.212·37-s + 0.858·38-s − 0.418·40-s − 1.40·41-s + 1.41·43-s − 0.150·44-s + 0.390·46-s + 0.574·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2.64T + 5T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 - 5.29T + 19T^{2} \)
23 \( 1 - 2.64T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 1.29T + 37T^{2} \)
41 \( 1 + 9T + 41T^{2} \)
43 \( 1 - 9.29T + 43T^{2} \)
47 \( 1 - 3.93T + 47T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 + 6.58T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 - 7.58T + 67T^{2} \)
71 \( 1 - 2.70T + 71T^{2} \)
73 \( 1 + 15.2T + 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 + 15.5T + 83T^{2} \)
89 \( 1 + 2.70T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29259832148892851819981694914, −6.89472688844500263623394192790, −5.68183884219909896951411680855, −5.28343170654185137238223581323, −4.53232244814853763024583822035, −3.80923680177797962015715438576, −3.18004995943381606656949025677, −2.46507451911545987819100337845, −1.22940663671762592696668762357, 0, 1.22940663671762592696668762357, 2.46507451911545987819100337845, 3.18004995943381606656949025677, 3.80923680177797962015715438576, 4.53232244814853763024583822035, 5.28343170654185137238223581323, 5.68183884219909896951411680855, 6.89472688844500263623394192790, 7.29259832148892851819981694914

Graph of the $Z$-function along the critical line