Properties

Label 2-9702-1.1-c1-0-119
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3.64·5-s + 8-s − 3.64·10-s − 11-s + 5·13-s + 16-s − 6·17-s − 0.354·19-s − 3.64·20-s − 22-s + 3.64·23-s + 8.29·25-s + 5·26-s + 4.29·29-s − 4·31-s + 32-s − 6·34-s − 1.64·37-s − 0.354·38-s − 3.64·40-s + 4.93·41-s − 4·43-s − 44-s + 3.64·46-s − 13.2·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.63·5-s + 0.353·8-s − 1.15·10-s − 0.301·11-s + 1.38·13-s + 0.250·16-s − 1.45·17-s − 0.0812·19-s − 0.815·20-s − 0.213·22-s + 0.760·23-s + 1.65·25-s + 0.980·26-s + 0.796·29-s − 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.270·37-s − 0.0574·38-s − 0.576·40-s + 0.771·41-s − 0.609·43-s − 0.150·44-s + 0.537·46-s − 1.93·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3.64T + 5T^{2} \)
13 \( 1 - 5T + 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 0.354T + 19T^{2} \)
23 \( 1 - 3.64T + 23T^{2} \)
29 \( 1 - 4.29T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 1.64T + 37T^{2} \)
41 \( 1 - 4.93T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 13.2T + 47T^{2} \)
53 \( 1 - 3.64T + 53T^{2} \)
59 \( 1 - 0.645T + 59T^{2} \)
61 \( 1 - 3.70T + 61T^{2} \)
67 \( 1 - 3.93T + 67T^{2} \)
71 \( 1 + 9.64T + 71T^{2} \)
73 \( 1 - 5.64T + 73T^{2} \)
79 \( 1 - 2.64T + 79T^{2} \)
83 \( 1 + 13.2T + 83T^{2} \)
89 \( 1 - 14.5T + 89T^{2} \)
97 \( 1 + 5.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22309125229382672097898345309, −6.68816731188156386280414541199, −6.05498629948923210132066374062, −5.00073920335338608391937754295, −4.53724437853616671412808749454, −3.76058789494987738579122629934, −3.35755832984024996535635168196, −2.40333715280629236486415429709, −1.20013032064705326129062320203, 0, 1.20013032064705326129062320203, 2.40333715280629236486415429709, 3.35755832984024996535635168196, 3.76058789494987738579122629934, 4.53724437853616671412808749454, 5.00073920335338608391937754295, 6.05498629948923210132066374062, 6.68816731188156386280414541199, 7.22309125229382672097898345309

Graph of the $Z$-function along the critical line