Properties

Label 2-9702-1.1-c1-0-117
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3.16·5-s + 8-s − 3.16·10-s − 11-s − 2·13-s + 16-s − 0.837·17-s + 1.16·19-s − 3.16·20-s − 22-s + 6.32·23-s + 5.00·25-s − 2·26-s + 4·29-s − 2.83·31-s + 32-s − 0.837·34-s − 4.32·37-s + 1.16·38-s − 3.16·40-s + 0.837·41-s + 6.32·43-s − 44-s + 6.32·46-s + 7.48·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.41·5-s + 0.353·8-s − 1.00·10-s − 0.301·11-s − 0.554·13-s + 0.250·16-s − 0.203·17-s + 0.266·19-s − 0.707·20-s − 0.213·22-s + 1.31·23-s + 1.00·25-s − 0.392·26-s + 0.742·29-s − 0.509·31-s + 0.176·32-s − 0.143·34-s − 0.710·37-s + 0.188·38-s − 0.500·40-s + 0.130·41-s + 0.964·43-s − 0.150·44-s + 0.932·46-s + 1.09·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3.16T + 5T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 0.837T + 17T^{2} \)
19 \( 1 - 1.16T + 19T^{2} \)
23 \( 1 - 6.32T + 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + 2.83T + 31T^{2} \)
37 \( 1 + 4.32T + 37T^{2} \)
41 \( 1 - 0.837T + 41T^{2} \)
43 \( 1 - 6.32T + 43T^{2} \)
47 \( 1 - 7.48T + 47T^{2} \)
53 \( 1 + 8.32T + 53T^{2} \)
59 \( 1 - 14.3T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 8.32T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 13.4T + 73T^{2} \)
79 \( 1 - 8.32T + 79T^{2} \)
83 \( 1 + 1.16T + 83T^{2} \)
89 \( 1 + 3.67T + 89T^{2} \)
97 \( 1 + 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40390696552429875805816987607, −6.78633192065727996855660760536, −5.88568236290735424417634580988, −5.07365129834296019028673126943, −4.55106686279006346469585476986, −3.87676902674504075288729074028, −3.13243545207358721453027083435, −2.51016169042402406257076724758, −1.19238049380801914993518122461, 0, 1.19238049380801914993518122461, 2.51016169042402406257076724758, 3.13243545207358721453027083435, 3.87676902674504075288729074028, 4.55106686279006346469585476986, 5.07365129834296019028673126943, 5.88568236290735424417634580988, 6.78633192065727996855660760536, 7.40390696552429875805816987607

Graph of the $Z$-function along the critical line