L(s) = 1 | − 2-s + 4-s − 5-s − 8-s + 10-s + 11-s − 2·13-s + 16-s + 5·17-s + 6·19-s − 20-s − 22-s − 7·23-s − 4·25-s + 2·26-s + 8·29-s − 10·31-s − 32-s − 5·34-s − 8·37-s − 6·38-s + 40-s + 7·41-s + 4·43-s + 44-s + 7·46-s − 47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s + 0.301·11-s − 0.554·13-s + 1/4·16-s + 1.21·17-s + 1.37·19-s − 0.223·20-s − 0.213·22-s − 1.45·23-s − 4/5·25-s + 0.392·26-s + 1.48·29-s − 1.79·31-s − 0.176·32-s − 0.857·34-s − 1.31·37-s − 0.973·38-s + 0.158·40-s + 1.09·41-s + 0.609·43-s + 0.150·44-s + 1.03·46-s − 0.145·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 5 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 23 | \( 1 + 7 T + p T^{2} \) |
| 29 | \( 1 - 8 T + p T^{2} \) |
| 31 | \( 1 + 10 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 7 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 - 3 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 9 T + p T^{2} \) |
| 83 | \( 1 + 15 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 + 13 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.36141660047017451180745820720, −7.02252447702095482585579797202, −5.84937030935396516375954294835, −5.56535267191391397009453512727, −4.49346556029279892548864256423, −3.66640971917477884603439082587, −3.03769457807762409156604606119, −2.00370142980636213080846097588, −1.12314680974055452083425111450, 0,
1.12314680974055452083425111450, 2.00370142980636213080846097588, 3.03769457807762409156604606119, 3.66640971917477884603439082587, 4.49346556029279892548864256423, 5.56535267191391397009453512727, 5.84937030935396516375954294835, 7.02252447702095482585579797202, 7.36141660047017451180745820720