Properties

Label 2-9702-1.1-c1-0-106
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2.82·5-s + 8-s + 2.82·10-s − 11-s + 5.65·13-s + 16-s − 2.82·17-s + 8.48·19-s + 2.82·20-s − 22-s + 8·23-s + 3.00·25-s + 5.65·26-s + 6·29-s − 8.48·31-s + 32-s − 2.82·34-s − 6·37-s + 8.48·38-s + 2.82·40-s + 8.48·41-s − 4·43-s − 44-s + 8·46-s + 2.82·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.26·5-s + 0.353·8-s + 0.894·10-s − 0.301·11-s + 1.56·13-s + 0.250·16-s − 0.685·17-s + 1.94·19-s + 0.632·20-s − 0.213·22-s + 1.66·23-s + 0.600·25-s + 1.10·26-s + 1.11·29-s − 1.52·31-s + 0.176·32-s − 0.485·34-s − 0.986·37-s + 1.37·38-s + 0.447·40-s + 1.32·41-s − 0.609·43-s − 0.150·44-s + 1.17·46-s + 0.412·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.298116160\)
\(L(\frac12)\) \(\approx\) \(5.298116160\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2.82T + 5T^{2} \)
13 \( 1 - 5.65T + 13T^{2} \)
17 \( 1 + 2.82T + 17T^{2} \)
19 \( 1 - 8.48T + 19T^{2} \)
23 \( 1 - 8T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 8.48T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 - 8.48T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 5.65T + 59T^{2} \)
61 \( 1 + 5.65T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 8.48T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 2.82T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43209077333041099967638462814, −6.84863709704885187339933982804, −6.18840944873326221476897663537, −5.49894036792827700017702860202, −5.20072340583974363770917662867, −4.23265279284282182639556182765, −3.28305089443051999549225027440, −2.80796549917341701180214480976, −1.71668467982582196674411124200, −1.08965411997081971373205071194, 1.08965411997081971373205071194, 1.71668467982582196674411124200, 2.80796549917341701180214480976, 3.28305089443051999549225027440, 4.23265279284282182639556182765, 5.20072340583974363770917662867, 5.49894036792827700017702860202, 6.18840944873326221476897663537, 6.84863709704885187339933982804, 7.43209077333041099967638462814

Graph of the $Z$-function along the critical line