Properties

Label 2-9702-1.1-c1-0-0
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2.89·5-s − 8-s + 2.89·10-s − 11-s + 0.364·13-s + 16-s − 2.89·17-s − 7.25·19-s − 2.89·20-s + 22-s − 8.14·23-s + 3.36·25-s − 0.364·26-s + 2.36·29-s − 10.6·31-s − 32-s + 2.89·34-s − 3.78·37-s + 7.25·38-s + 2.89·40-s + 2.89·41-s + 11.4·43-s − 44-s + 8.14·46-s − 6.52·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.29·5-s − 0.353·8-s + 0.914·10-s − 0.301·11-s + 0.101·13-s + 0.250·16-s − 0.701·17-s − 1.66·19-s − 0.646·20-s + 0.213·22-s − 1.69·23-s + 0.672·25-s − 0.0715·26-s + 0.439·29-s − 1.91·31-s − 0.176·32-s + 0.496·34-s − 0.622·37-s + 1.17·38-s + 0.457·40-s + 0.451·41-s + 1.74·43-s − 0.150·44-s + 1.20·46-s − 0.952·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1579256708\)
\(L(\frac12)\) \(\approx\) \(0.1579256708\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2.89T + 5T^{2} \)
13 \( 1 - 0.364T + 13T^{2} \)
17 \( 1 + 2.89T + 17T^{2} \)
19 \( 1 + 7.25T + 19T^{2} \)
23 \( 1 + 8.14T + 23T^{2} \)
29 \( 1 - 2.36T + 29T^{2} \)
31 \( 1 + 10.6T + 31T^{2} \)
37 \( 1 + 3.78T + 37T^{2} \)
41 \( 1 - 2.89T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 + 6.52T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 + 6.14T + 67T^{2} \)
71 \( 1 + 13.9T + 71T^{2} \)
73 \( 1 - 1.10T + 73T^{2} \)
79 \( 1 - 10.1T + 79T^{2} \)
83 \( 1 + 3.10T + 83T^{2} \)
89 \( 1 - 2.14T + 89T^{2} \)
97 \( 1 + 6.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70761824601584575829510547499, −7.28131884517485064799769826842, −6.39002837203507618386419238818, −5.89315973518579285596090872157, −4.73564643463324215917741594413, −4.10641466148401952011905331876, −3.51457545156301976231617767918, −2.44064734111392240053844158296, −1.70289665987787029654696789655, −0.20171847177275891850518353197, 0.20171847177275891850518353197, 1.70289665987787029654696789655, 2.44064734111392240053844158296, 3.51457545156301976231617767918, 4.10641466148401952011905331876, 4.73564643463324215917741594413, 5.89315973518579285596090872157, 6.39002837203507618386419238818, 7.28131884517485064799769826842, 7.70761824601584575829510547499

Graph of the $Z$-function along the critical line