L(s) = 1 | − 2-s + 4-s − 2.89·5-s − 8-s + 2.89·10-s − 11-s + 0.364·13-s + 16-s − 2.89·17-s − 7.25·19-s − 2.89·20-s + 22-s − 8.14·23-s + 3.36·25-s − 0.364·26-s + 2.36·29-s − 10.6·31-s − 32-s + 2.89·34-s − 3.78·37-s + 7.25·38-s + 2.89·40-s + 2.89·41-s + 11.4·43-s − 44-s + 8.14·46-s − 6.52·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 1.29·5-s − 0.353·8-s + 0.914·10-s − 0.301·11-s + 0.101·13-s + 0.250·16-s − 0.701·17-s − 1.66·19-s − 0.646·20-s + 0.213·22-s − 1.69·23-s + 0.672·25-s − 0.0715·26-s + 0.439·29-s − 1.91·31-s − 0.176·32-s + 0.496·34-s − 0.622·37-s + 1.17·38-s + 0.457·40-s + 0.451·41-s + 1.74·43-s − 0.150·44-s + 1.20·46-s − 0.952·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1579256708\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1579256708\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + 2.89T + 5T^{2} \) |
| 13 | \( 1 - 0.364T + 13T^{2} \) |
| 17 | \( 1 + 2.89T + 17T^{2} \) |
| 19 | \( 1 + 7.25T + 19T^{2} \) |
| 23 | \( 1 + 8.14T + 23T^{2} \) |
| 29 | \( 1 - 2.36T + 29T^{2} \) |
| 31 | \( 1 + 10.6T + 31T^{2} \) |
| 37 | \( 1 + 3.78T + 37T^{2} \) |
| 41 | \( 1 - 2.89T + 41T^{2} \) |
| 43 | \( 1 - 11.4T + 43T^{2} \) |
| 47 | \( 1 + 6.52T + 47T^{2} \) |
| 53 | \( 1 + 11.7T + 53T^{2} \) |
| 59 | \( 1 + 10.5T + 59T^{2} \) |
| 61 | \( 1 - 11.9T + 61T^{2} \) |
| 67 | \( 1 + 6.14T + 67T^{2} \) |
| 71 | \( 1 + 13.9T + 71T^{2} \) |
| 73 | \( 1 - 1.10T + 73T^{2} \) |
| 79 | \( 1 - 10.1T + 79T^{2} \) |
| 83 | \( 1 + 3.10T + 83T^{2} \) |
| 89 | \( 1 - 2.14T + 89T^{2} \) |
| 97 | \( 1 + 6.72T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70761824601584575829510547499, −7.28131884517485064799769826842, −6.39002837203507618386419238818, −5.89315973518579285596090872157, −4.73564643463324215917741594413, −4.10641466148401952011905331876, −3.51457545156301976231617767918, −2.44064734111392240053844158296, −1.70289665987787029654696789655, −0.20171847177275891850518353197,
0.20171847177275891850518353197, 1.70289665987787029654696789655, 2.44064734111392240053844158296, 3.51457545156301976231617767918, 4.10641466148401952011905331876, 4.73564643463324215917741594413, 5.89315973518579285596090872157, 6.39002837203507618386419238818, 7.28131884517485064799769826842, 7.70761824601584575829510547499