L(s) = 1 | − 3.79·5-s − 2.15·7-s + 2.54·11-s − 1.95·13-s − 0.224·17-s + 0.224·19-s − 2.82·23-s + 9.42·25-s + 2.62·29-s − 1.84·31-s + 8.19·35-s + 5.18·37-s − 5.88·41-s + 10.9·43-s + 2.82·47-s − 2.33·49-s − 10.6·53-s − 9.65·55-s − 5.65·59-s + 8.46·61-s + 7.43·65-s + 14.7·67-s − 4.31·71-s + 5.97·73-s − 5.48·77-s + 15.0·79-s + 14.3·83-s + ⋯ |
L(s) = 1 | − 1.69·5-s − 0.816·7-s + 0.766·11-s − 0.542·13-s − 0.0545·17-s + 0.0515·19-s − 0.589·23-s + 1.88·25-s + 0.487·29-s − 0.330·31-s + 1.38·35-s + 0.853·37-s − 0.918·41-s + 1.67·43-s + 0.412·47-s − 0.334·49-s − 1.45·53-s − 1.30·55-s − 0.736·59-s + 1.08·61-s + 0.921·65-s + 1.80·67-s − 0.512·71-s + 0.699·73-s − 0.625·77-s + 1.68·79-s + 1.57·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 3.79T + 5T^{2} \) |
| 7 | \( 1 + 2.15T + 7T^{2} \) |
| 11 | \( 1 - 2.54T + 11T^{2} \) |
| 13 | \( 1 + 1.95T + 13T^{2} \) |
| 17 | \( 1 + 0.224T + 17T^{2} \) |
| 19 | \( 1 - 0.224T + 19T^{2} \) |
| 23 | \( 1 + 2.82T + 23T^{2} \) |
| 29 | \( 1 - 2.62T + 29T^{2} \) |
| 31 | \( 1 + 1.84T + 31T^{2} \) |
| 37 | \( 1 - 5.18T + 37T^{2} \) |
| 41 | \( 1 + 5.88T + 41T^{2} \) |
| 43 | \( 1 - 10.9T + 43T^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + 10.6T + 53T^{2} \) |
| 59 | \( 1 + 5.65T + 59T^{2} \) |
| 61 | \( 1 - 8.46T + 61T^{2} \) |
| 67 | \( 1 - 14.7T + 67T^{2} \) |
| 71 | \( 1 + 4.31T + 71T^{2} \) |
| 73 | \( 1 - 5.97T + 73T^{2} \) |
| 79 | \( 1 - 15.0T + 79T^{2} \) |
| 83 | \( 1 - 14.3T + 83T^{2} \) |
| 89 | \( 1 - 1.42T + 89T^{2} \) |
| 97 | \( 1 + 16.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.45656482571325430088661443673, −6.71686477759870519991630042016, −6.25943837488904487804573655987, −5.16964524345623687718873763114, −4.40499414030397629699523691258, −3.80622012485845479039353756666, −3.27715767496555758821559394971, −2.34244573133933266322068200011, −0.936160522049080287652222341842, 0,
0.936160522049080287652222341842, 2.34244573133933266322068200011, 3.27715767496555758821559394971, 3.80622012485845479039353756666, 4.40499414030397629699523691258, 5.16964524345623687718873763114, 6.25943837488904487804573655987, 6.71686477759870519991630042016, 7.45656482571325430088661443673