Properties

Label 2-9680-1.1-c1-0-35
Degree $2$
Conductor $9680$
Sign $1$
Analytic cond. $77.2951$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.843·3-s − 5-s + 4.75·7-s − 2.28·9-s − 3.78·13-s + 0.843·15-s − 4.98·17-s + 3.12·19-s − 4.01·21-s − 9.39·23-s + 25-s + 4.45·27-s + 2.60·29-s + 3.68·31-s − 4.75·35-s − 3.44·37-s + 3.18·39-s − 9.32·41-s − 11.7·43-s + 2.28·45-s + 1.66·47-s + 15.6·49-s + 4.20·51-s − 1.93·53-s − 2.63·57-s − 0.103·59-s + 10.1·61-s + ⋯
L(s)  = 1  − 0.486·3-s − 0.447·5-s + 1.79·7-s − 0.763·9-s − 1.04·13-s + 0.217·15-s − 1.20·17-s + 0.716·19-s − 0.875·21-s − 1.95·23-s + 0.200·25-s + 0.858·27-s + 0.484·29-s + 0.662·31-s − 0.804·35-s − 0.566·37-s + 0.510·39-s − 1.45·41-s − 1.78·43-s + 0.341·45-s + 0.242·47-s + 2.23·49-s + 0.588·51-s − 0.266·53-s − 0.348·57-s − 0.0135·59-s + 1.29·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9680\)    =    \(2^{4} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(77.2951\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.192908202\)
\(L(\frac12)\) \(\approx\) \(1.192908202\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 0.843T + 3T^{2} \)
7 \( 1 - 4.75T + 7T^{2} \)
13 \( 1 + 3.78T + 13T^{2} \)
17 \( 1 + 4.98T + 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
23 \( 1 + 9.39T + 23T^{2} \)
29 \( 1 - 2.60T + 29T^{2} \)
31 \( 1 - 3.68T + 31T^{2} \)
37 \( 1 + 3.44T + 37T^{2} \)
41 \( 1 + 9.32T + 41T^{2} \)
43 \( 1 + 11.7T + 43T^{2} \)
47 \( 1 - 1.66T + 47T^{2} \)
53 \( 1 + 1.93T + 53T^{2} \)
59 \( 1 + 0.103T + 59T^{2} \)
61 \( 1 - 10.1T + 61T^{2} \)
67 \( 1 - 4.99T + 67T^{2} \)
71 \( 1 - 6.22T + 71T^{2} \)
73 \( 1 - 7.30T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 - 5.69T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 - 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983902429854460633673229961883, −6.94495532630814298602579844057, −6.40835991195165185994967792858, −5.30387211719588335374083818748, −5.05523399582115601879694111005, −4.41415926757215845443079609461, −3.53157972520906985903761836119, −2.38105779858667443147727319724, −1.81978182023038862506030483755, −0.51949558430695909496294226570, 0.51949558430695909496294226570, 1.81978182023038862506030483755, 2.38105779858667443147727319724, 3.53157972520906985903761836119, 4.41415926757215845443079609461, 5.05523399582115601879694111005, 5.30387211719588335374083818748, 6.40835991195165185994967792858, 6.94495532630814298602579844057, 7.983902429854460633673229961883

Graph of the $Z$-function along the critical line