Properties

Label 2-9680-1.1-c1-0-191
Degree $2$
Conductor $9680$
Sign $-1$
Analytic cond. $77.2951$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s − 2·13-s − 2·15-s + 6·17-s + 2·23-s + 25-s − 4·27-s − 8·29-s − 4·31-s − 2·37-s − 4·39-s − 4·41-s + 4·43-s − 45-s − 2·47-s − 7·49-s + 12·51-s − 10·53-s + 8·61-s + 2·65-s + 2·67-s + 4·69-s − 8·71-s − 10·73-s + 2·75-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s − 0.554·13-s − 0.516·15-s + 1.45·17-s + 0.417·23-s + 1/5·25-s − 0.769·27-s − 1.48·29-s − 0.718·31-s − 0.328·37-s − 0.640·39-s − 0.624·41-s + 0.609·43-s − 0.149·45-s − 0.291·47-s − 49-s + 1.68·51-s − 1.37·53-s + 1.02·61-s + 0.248·65-s + 0.244·67-s + 0.481·69-s − 0.949·71-s − 1.17·73-s + 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9680\)    =    \(2^{4} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(77.2951\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54811114930240227810952805544, −6.96026653359103287180014228525, −5.88479031484423197355353637309, −5.28193506050731343782060552673, −4.42825460198157208676674822743, −3.45238664618383510275842919404, −3.27022364965941645073353440498, −2.26588884063590301804734609180, −1.42479578511137833146794193415, 0, 1.42479578511137833146794193415, 2.26588884063590301804734609180, 3.27022364965941645073353440498, 3.45238664618383510275842919404, 4.42825460198157208676674822743, 5.28193506050731343782060552673, 5.88479031484423197355353637309, 6.96026653359103287180014228525, 7.54811114930240227810952805544

Graph of the $Z$-function along the critical line