L(s) = 1 | + (1.26 + 0.917i)3-s + (1.10 − 3.38i)5-s + (2.52 − 1.83i)7-s + (−0.173 − 0.534i)9-s + (1.58 + 4.87i)13-s + (4.49 − 3.26i)15-s + (−0.618 + 1.90i)17-s + (−3.23 − 2.35i)19-s + 4.87·21-s + 2.43·23-s + (−6.21 − 4.51i)25-s + (1.71 − 5.28i)27-s + (−4.14 + 3.01i)29-s + (−1.71 − 5.28i)31-s + (−3.43 − 10.5i)35-s + ⋯ |
L(s) = 1 | + (0.729 + 0.529i)3-s + (0.492 − 1.51i)5-s + (0.954 − 0.693i)7-s + (−0.0578 − 0.178i)9-s + (0.439 + 1.35i)13-s + (1.16 − 0.844i)15-s + (−0.149 + 0.461i)17-s + (−0.742 − 0.539i)19-s + 1.06·21-s + 0.508·23-s + (−1.24 − 0.903i)25-s + (0.330 − 1.01i)27-s + (−0.769 + 0.559i)29-s + (−0.308 − 0.949i)31-s + (−0.580 − 1.78i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.21583 - 0.894536i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.21583 - 0.894536i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-1.26 - 0.917i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (-1.10 + 3.38i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.52 + 1.83i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.58 - 4.87i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.618 - 1.90i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.23 + 2.35i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 2.43T + 23T^{2} \) |
| 29 | \( 1 + (4.14 - 3.01i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.71 + 5.28i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-6.11 + 4.44i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (0.908 + 0.660i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 7.12T + 43T^{2} \) |
| 47 | \( 1 + (6.47 + 4.70i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.78 - 11.6i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (6.31 - 4.58i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.347 - 1.06i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 9.56T + 67T^{2} \) |
| 71 | \( 1 + (2.68 - 8.25i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-4.14 + 3.01i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-3.43 - 10.5i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (0.270 - 0.833i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 2.68T + 89T^{2} \) |
| 97 | \( 1 + (-4.80 - 14.7i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.500579213291431501660018563458, −9.102391111725972171281881122226, −8.536209358350879344563710811244, −7.66744474144696965228639145427, −6.44952071866094538531992382164, −5.36160871266765370650667401699, −4.28630494383086740624785629146, −4.07849986691324809966319676530, −2.21391887938293164863244266788, −1.12832429456611363563797337798,
1.80399854171188810184508823344, 2.62281650440425454031680776544, 3.37426247294990576563010306968, 5.03458978848351632435229361207, 5.92124025910157790633164457050, 6.80102026698598313802025402303, 7.81063212058076158875050098711, 8.172424360793216757317980087174, 9.198325485511215492934982689353, 10.24859738800171913311411668786